
Thesis submitted in partial fulfillment of the requirements for the degree of
Master of Arts in Computational Linguistics

Automated Sound Law Inference
Using Probabilistic Soft Logic

Author:
Thora Daneyko

July 2020

First Examiner:
Dr. Johannes Dellert

Second Examiner:
Prof. Dr. Gerhard Jäger

Eberhard Karls Universität Tübingen
Philosophische Fakultät

Seminar für Sprachwissenschaft

Antiplagiatserklärung
Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst habe, dass ich keine
anderen als die angegebenen Hilfsmittel und Quellen benutzt habe, dass ich alle wörtlich
oder sinngemäß aus anderen Werken übernommenen Aussagen als solche gekennzeichnet
habe, dass die Arbeit weder vollständig noch in wesentlichen Teilen Gegenstand eines
anderen Prüfungsverfahrens gewesen ist, dass ich die Arbeit weder vollständig noch in
wesentlichen Teilen bereits veröffentlicht habe, und dass das in Dateiform eingereichte
Exemplar mit dem eingereichten gebundenen Exemplar übereinstimmt.

Tübingen, den
Thora Daneyko

Abstract
For over a century, historical linguists have with great success reconstructed unattested
ancestral languages and the sound changes that transformed them into our modern lan-
guages, using a procedure called the comparative method. Computational approaches to
this task are almost non-existent to this date, especially for inferring conditioned sound
change. In this thesis, I present SoInEn, a system for automated inference of conditioned
sound laws from raw lexical data. It is implemented within Probabilistic Soft Logic (PSL),
a framework for efficient inference on probabilistic graphical models specified as first-order
logic rules. This should enable a rather direct translation of the human reasoning applied
during the comparative method, and also allows SoInEn to comprehensibly explain its
decisions.

While SoInEn is able to correctly identify several important sound laws for my test cases,
Dravidian and Samoyedic, it turns out that even the ones with larger concept lists among
the current lexical databases do not provide enough data for inferring more infrequent,
highly context-dependent sound changes. Emulating complex human reasoning within
PSL is also not as straightforward as anticipated due to the high interdependency of the
different heuristics applied and the discrepancy between mathematical logic and human
intuition.

These results highlight that for computationally solving sound law inference and ancestral
language reconstruction, we need more lexical databases that focus on higher concept
rather than language coverage. They also demonstrate PSL’s potential as an alternative
to “black box” machine learning approaches for solving complex inference tasks.

Acknowledgments
First and foremost, I would like to express my deepest gratitude to Johannes Dellert,
who not only supervised this thesis, providing me with invaluable advice, feedback and
support, but has also influenced my academic development like no one else during the six
years I have worked for him as a student assistant. It was he who sparked my interest in
linguistic typology and historical linguistics, and gave me the opportunity to deepen my
theoretical knowledge and expand my practical skills in (computational) linguistics during
the always interesting work for him.

I also thank my fellow colleagues in the EtInEn group, Verena Blaschke, Zhuge Gao and
Jekaterina Kaparina, for the interesting discussions, as well as Hizniye Isabella Boga, who
also patiently listened to my complaints when something did not work (as was usually the
case).

Finally, I would like to thank the many dedicated current and former lecturers at the
Department of Linguistics, among them Christian Bentz, Armin Buch, Gerhard Jäger and
Daniël de Kok, for showing me so many different perspectives on my subject, as well as
Heike Oberlin from the Department of Indology for introducing me to Malayāḷaṁ.

Contents

Introduction 1

1 Methods in Phonological Comparative Linguistics 3
1.1 Expressing Sound Change . 3
1.2 The Regularity of Sound Change . 4
1.3 The Comparative Method . 6

1.3.1 General Procedure . 6
1.3.2 Shortcomings . 13

1.4 Lexical Databases . 14
1.4.1 NorthEuraLex . 14

1.5 Automating the Comparative Method . 15

2 Probabilistic Soft Logic 17
2.1 PSL Syntax . 17

2.1.1 Predicates and Atoms . 17
2.1.2 Rules . 18

2.2 The LINQS Grounding Process . 21
2.2.1 Grounding Variables . 22
2.2.2 Grounding Open and Closed Predicates 23
2.2.3 Priors as Replacement for Negative Evidence 24

2.3 Hinge-Loss Markov Random Fields . 25
2.3.1 Translating Atoms and Rules into HL-MRFs 25
2.3.2 Properties of HL-MRFs . 27

2.4 PSL for Historical Linguistics . 28

3 Preparation of Gold Standard Sound Law Sets 29
3.1 Dravidian . 29

3.1.1 Proto Vowels . 30
3.1.2 Proto Consonants . 31
3.1.3 Phonotactics . 32
3.1.4 Sound Changes . 33
3.1.5 Challenges . 37

3.2 Samoyedic . 38
3.2.1 Proto Vowels . 39
3.2.2 Proto Consonants . 40

3.2.3 Phonotactics . 41
3.2.4 Sound Changes . 42
3.2.5 Challenges . 47

4 SoInEn, a PSL Model for Sound Law Inference 50
4.1 Integration into EtInEn . 50

4.1.1 Predicate Naming Conventions . 51
4.1.2 Database Manipulation . 51
4.1.3 User Interface . 52

4.2 Providing World Knowledge . 56
4.2.1 Cognate Judgments . 56
4.2.2 Alignment . 57
4.2.3 Counting Sound Correspondences . 58
4.2.4 N-Grams of Sound Correspondences 62
4.2.5 Sound Classification . 63
4.2.6 Sound Transition Matrix . 65

4.3 Phase 1: Proto Inventory Reconstruction 68
4.3.1 Predicates . 68
4.3.2 Ideas . 69
4.3.3 Rules . 70

4.4 Phase 2: Context Detection . 72
4.4.1 Predicates . 72
4.4.2 Ideas . 73
4.4.3 Rules . 73

4.5 Phase 3: Sound Law Inference . 76
4.5.1 Predicates . 76
4.5.2 Ideas . 76
4.5.3 Rules . 78

5 Evaluation 81
5.1 Setup . 81

5.1.1 Format of the Evaluation Files . 81
5.1.2 Generating Gold Standard Sound Correspondences 84

5.2 Method . 84
5.2.1 General Measures . 85
5.2.2 Loose Context Matching . 86

5.3 Results and Discussion . 86
5.3.1 Phase 1: Proto Inventory Reconstruction 87
5.3.2 Phase 3: Sound Law Inference . 89

6 Conclusion and Outlook 95
6.1 Future Work . 95
6.2 Working with PSL . 97

Bibliography 99

A Source Code 105

B Sound Classes 106

C Gold Standard Files Used in Evaluation 109
C.1 Dravidian . 109
C.2 Samoyedic . 112

Introduction

The idea that language change and diversification is governed to a large extent by regular
sound changes (or sound laws) applying throughout the lexicon has fascinated historical
linguists ever since its discovery in the second half of the 19th century. Even though
the assumption that these sound laws are truly exceptionless has by now been falsified
(Kiparsky 2003; Harrison 2003, e.g.), it is their quasi-regularity that has enabled us to
reconstruct entire unattested ancestral languages via the comparative method (Crowley and
Bowern 2010; Campbell 2013, e.g.). Following this iterative procedure, historical linguists
deduce ancient word forms from the systematic similarities and differences between related
modern word forms. Despite its age and the falsity of the regularity assumption, the
comparative method is so far unsurpassed by any other manual or automated method for
ancestral language reconstruction.

Early attempts at automating parts of the comparative method were still closely oriented
towards the manual procedure. Due to its high complexity, more recent approaches have
often shifted towards adopting more widely applicable methods from biology, graph theory
or machine learning. While the earlier steps of the comparative method, such as cognacy
judgment (identifying related inherited words) and loanword detection (identifying bor-
rowed words) have received most attention from the computational linguistics community
in the recent years, implementations of sound law inference in particularly are largely
underrepresented. List (2019b) puts the task onto his list of “Open Problems in Computa-
tional Historical Linguistics”, noting that it “has usually been overlooked greatly” (p. 14)
and that “no current solutions exist” (p. 15). Even though the latter is not entirely true
(see e.g. Hruschka et al. 2015), none of the proposed models can detect conditioned sound
change, i.e. sound laws that only apply in specific contexts.

In this thesis, I present a system for automated (conditioned) sound law inference called
SoInEn. It is designed as part of the larger EtInEn system, a suite of tools for various
tasks in historical linguistics, such as morpheme splitting or loanword detection, that
is currently being developed by a group at the General Linguistics department of the
University of Tübingen. Like the other components of EtInEn, SoInEn is modeled inside
the Probabilistic Soft Logic (PSL) framework. PSL converts first-order logic rules into an
efficient probabilistic graphical model operating on soft truth values in the interval [0, 1].
This makes it possible to directly translate the reasoning applied by historical linguists
within the comparative method into a probabilistic inference task.

In chapter 1, I give a general introduction to the methodological background surround-

1

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

ing sound change. I first present the Neogrammarian Hypothesis, the assumption that
sound change is regular and exceptionless, and discuss its consequences and weaknesses.
I then elaborate on the individual steps of the comparative method in detail, also treat-
ing its limitations. Afterwards, I shortly introduce a crucial prerequisite for computa-
tional applications of the comparative method, namely lexical databases, in particular
the NorthEuraLex database which is used as a data source for SoInEn. Finally, I review
previous implementations relating to the comparative method.

Chapter 2 then introduces PSL, in particular the syntax of its logical rules and their
conversion into inference objectives. In the end, I briefly discuss why PSL is a good fit for
computational historical linguistics and sound law inference in particular.

Due to its scarce treatment in computational linguistics, there does not yet exist a proper
gold standard for sound law inference to evaluate performance against, especially not one
pertaining to conditioned sound laws. In chapter 3, I therefore present the gold standard
I have derived from the literature for the Dravidian language family and the Samoyedic
branch of the Uralic language family, also discussing the individual challenges associated
with each set.

In chapter 4, I then present SoInEn, elaborating its integration into the larger EtInEn
system, the preprocessing steps that had be taken outside of PSL, and the logical predicates
and rules formulated to represent the comparative method.

Afterwards, I evaluate SoInEn’s performance on the Dravidian and Samoyedic data in-
side NorthEuraLex by comparing it to the gold standard derived earlier, and discuss the
emerging issues in chapter 5.

Finally, chapter 6 concludes the thesis by outlining future work that has to be carried out
in order to improve SoInEn as well as automated sound law inference in general. It also
discusses the drawbacks and the potential of PSL for complex applications such as those
in historical linguistics.

2

1 Methods in Phonological
Comparative Linguistics

Comparative linguistics is a branch of historical linguistics. Historical linguists study
language change, i.e. how the phonology, morphology, syntax and semantics of a language
or group of languages has changed over time, reconstructing ancestral forms and deducing
language relatedness (Campbell 2013). The most successful way of doing so has been the
comparative method, which reconstructs earlier stages of a group of related languages by
examining the differences and similarities between them (Campbell 2013; Crowley and
Bowern 2010). Another method to investigate language change is internal reconstruction,
which traces the evolution of a single language by looking at that language alone, e.g.
reconstructing earlier forms of words from irregular word forms (Campbell 2013; Crowley
and Bowern 2010).

Since the reasoning of SoInEn is based on the comparative method, I only discuss the
comparison-based branch of historical linguistics in this thesis. I also disregard its ap-
plication to morphology, syntax and semantics (i.e. anything except phonology), since
SoInEn is designed to model phonological change only.

After introducing the format in which sound change rules are usually given (1.1), I discuss
the idea of the regularity of sound change (1.2), which is a crucial precondition for the
comparative method. Then, I explain the comparative method and how it is generally
applied to investigate sound change (1.3.1). I also discuss its limitations and theoretical
issues (1.3.2). Afterwards, I turn to lexical databases which are the foundation of more
data-driven computational methods in historical linguistics (1.4). In particular, I introduce
the NorthEuraLex database, whose data sets I have used in developing and evaluating
SoInEn (1.4.1).

1.1 Expressing Sound Change
A certain sound change from mother language M to daughter language D is usually given
in the format sM > sD / E, which means that the sound sM of the mother language has
become sD in the daughter language in the environment or context of E in the mother

3

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

language (Campbell 2013; Crowley and Bowern 2010). In E, the underscore _ is usually
used as a placeholder for the changing sound. k > t͡ʃ / _ i, for example, describes the
palatalization of /k/ before the high front vowel /i/, a common sound change among the
languages of the world. Expressions such as k > t͡ʃ / _ i are referred to as sound laws.
The law-like properties of these sound changes are discussed in the next section.

Instead of specifying the sounds involved literally (k, t͡ʃ, i), feature sets or other short-
cuts can be used. If the palatalization above applied before all front vowels, the sound
law could be reformulated as k > t͡ʃ / _ [+front]. Intervocalic voicing of /t/ to /d/
could be expressed as t > d / V _ V. If it applied to all stop consonants, we could write
[+stop,-voice] > [+voice] / V _ V.
All of the above sound laws are examples of conditioned sound laws, i.e. sound changes
that only occurred in a limited environment. When a sound changed everywhere in a
language regardless of phonetic context, we have an unconditioned sound law. Thus, l > r
describes a sound law through which all /l/s of the mother language became /r/ in the
daughter language.

The word boundary in contexts is marked by #. In a deletion or insertion, the missing
sound is usually indicated by ∅. For example, ∅ > e / # _ CC describes the insertion
of /e/ before word-initial consonant clusters. h > ∅ is the unconditioned deletion of all
glottal fricatives.

1.2 The Regularity of Sound Change
Up until the 1800s, the study of language history and change mostly lacked systematic
methods and consistent treatment, and was often driven by ideological intentions (Crowley
and Bowern 2010). In the 1870s, a new school of linguistic scholars emerged in Germany,
who called themselves the Neogrammarians (ger. Junggrammatiker ‘young grammarians’).
They posited what is now called the Neogrammarian Hypothesis, which states that 1) all
sound changes are regular, i.e. apply without exception, and 2) are only conditioned by
the phonetic environment and insensitive to the semantic or grammatical environment
(Crowley and Bowern 2010; Hale 2007; Kiparsky 2003; Campbell 2013). This assumption
enabled the systematic, falsifiable, and thus, scientific study of language change and laid
the foundation for the comparative method (Crowley and Bowern 2010).

Originally, the idea that sound change operates without exceptions was meant literally,
which is why the rules governing this change are referred to as sound laws (in analogy to
natural laws such as in physics). This means that e.g. the sound law k > t͡ʃ / _ [+front]
operates on all voiceless velar stops before front vowels, irrespective of e.g. word class,
position in the sentence or meaning of the lexical items that contain it, and without any
exceptions. The latter claim has been the main point of criticism towards the Neogrammar-
ian Hypothesis ever since its introduction. In 1885, Schuchardt wrote in his paper with the
telling subtitle “Against the Neogrammarians” (orig. “Gegen die Junggrammatiker”):

“When a natural scientist hears of the exceptionlessness of the sound laws
for the first time, he will probably think of sound laws that hold always and

4

1.2. The Regularity of Sound Change 1. COMPARATIVE LINGUISTICS

everywhere. […] If you now inform this layman that such universal sound laws
have not yet been discovered, that, in fact, all sound laws identified so far
are characterized by a tight spatial and temporal constraint, he will miss that
absolute necessity which always appears as a precondition for exceptionless
laws.”1 (Schuchardt 1885, p. 9)

The spatial and temporal constraint that Schuchardt mentions refers to the fact that
sound laws operate in different areas of the language community and in different times to
a different extent. In every language, there usually exist several dialects whose boundary
is not clear cut but blurred, which is why linguists usually speak of a dialect continuum.
Each sound change takes place in a different subset of these dialects, and the areas in which
individual sound changes apply overlap so much that it is often impossible to draw the line
between two dialects with clearly distinct sets of sound laws (Schuchardt 1885; Crowley and
Bowern 2010). It can even happen that along the lines of that dialect continuum, the sound
change will gradually and seemingly arbitrarily affect more and more lexical items (Crowley
and Bowern 2010). In view of this, it is hard to define multiple exceptionless sound laws
operating in a language as a single fixed unit. This finally led the Neogrammarians to
assume that sound laws operate on the level of individual speakers, which made Schuchardt
wonder:

“A sound change is often found within a very large area, i.e. in a number of
connected dialects […] Why should a sound change develop spontaneously in
each of these speaker-specific languages that form a dialect?”2 (Schuchardt
1885, p. 12)

It is not even the case that such a sound change develops spontaneously in any subdivision
of a language and immediately applies to all parts of the lexicon. Often, it spreads from a
single innovation in a few lexical items and gradually affects more and more parts of the
lexicon until the sound change can be called complete. This process of words changing
in analogy to other similar words is called lexical diffusion (Crowley and Bowern 2010;
Kiparsky 2003). It shows that sound change, while at work, is neither exceptionless nor
total, and if interrupted, the result will not be either (Kiparsky 2003).

In addition, the environment in which sound laws apply is not always purely phonetic in
nature. There are changes that only occur at morpheme boundaries, in words of a specific
word class (Crowley and Bowern 2010) or even just in individual lexical items without any
apparent system, which is referred to as sporadic change (Campbell 2013).

Despite “[t]he falsity of the regularity assumption” being “evident” (Harrison 2003, p. 231),
the Neogrammarian Hypothesis has given birth to the extremely successful comparative

1my translation, orig. “Wenn ein Naturforscher zum ersten Mal von der Ausnahmslosigkeit der Lautgesetze
hört, so wird er wahrscheinlich an immer und überall geltende Lautgesetze denken. […] Verständigt man nun
jenen Laien darüber dass dergleichen allgemeine Lautgesetze noch nicht entdeckt sind, dass vielmehr allen
bisher ermittelten Lautgesetzen eine verhältnissmässig enge räumliche und zeitliche Begrenztheit eignet, so
wird er hier jene absolute Nothwendigkeit vermissen welche stets als Voraussetzung ausnahmsloser Gesetze
erscheint.”

2my translation, orig. “Ein Lautwandel findet sich oft über ein sehr weites Gebiet hin, d. h. in einer Reihe
zusammenhängender Dialekte […] Warum soll nun ein Lautwandel in jeder der Individualsprachen welche
einen Dialekt ausmachen, spontan entstanden sein?”

5

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

method, the standard procedure for inferring sound change and reconstructing previous
stages of a language (Campbell 2013; Crowley and Bowern 2010; Rankin 2003). In light
of this, the regularity condition is usually interpreted more laxly in practice. Thus, in
their introductory book to historical linguistics, Crowley and Bowern (2010) recommend
to “[s]eparate those correspondences [sounds in the modern languages likely derived from
a common ancestor] that are systematic from those that are isolated” (p. 168) and “simply
ignore such isolated correspondences and reconstruct only on the basis of the evidence
provided by systematic sound correspondences” (p. 169). Still, it is important to keep the
theoretical weakness behind the comparative method in mind when applying it.

1.3 The Comparative Method
The Neogrammarian Hypothesis has a useful practical consequence: If a set of related
languages is “generated” (at least on a phonological level) via successive application of
several exceptionless sound laws to a common mother language, the regular output of
these sound laws can be identified by comparison of the resulting daughter languages,
and the original input of the mother language can be deduced from the characteristics of
its reflexes in the daughter languages. This procedure is called the comparative method
(Campbell 2013; Crowley and Bowern 2010; Rankin 2003).

Usually, the mother of a family or subfamily of languages is unrecorded. In such a
case, it is called the proto-language of that family (e.g. “Proto-Germanic”, “Proto-Uralic”,
“Proto-Indo-European”) and may only hypothetically be reconstructed. Rarely, the proto-
language or a close relative is known: Latin, for instance, is quite similar to what is recon-
structed as Proto-Romance and can serve as a test case for the correctness of the compar-
ative method (Campbell 2013). The unattested reconstructed words of the proto-language
are conventionally prefixed with an asterisk * to mark them as hypothetical.

1.3.1 General Procedure
The comparative method is not an algorithm that has to be followed strictly. While there
is large consensus in historical linguistics textbooks (Campbell 2013; Crowley and Bowern
2010; Rankin 2003) about the basic steps that should be taken when applying it, it is an
individual process that also involves the linguist’s intuition. After all, sound changes are
not entirely regular, and the plausibility of reconstructed sound laws and proto-language
inventories also depend on family-specific features such as areal effects.

In this section, I describe how a historical linguist would generally go about applying
the comparative method, briefly discussing the challenges each step poses to automation.
Initially, sets of related words that can be compared are identified. Afterwards, these
words are aligned to discover which sounds of the daughter languages most likely go back
to the same proto-sound. These reflexes can then be used to actually reconstruct the
proto-sounds and establish a sensible proto-inventory. Finally, sound correspondences
that are in complementary distribution or apparently evolving from the same proto-sound
are investigated to detect the phonological context for conditioned sound laws.

6

1.3. The Comparative Method 1. COMPARATIVE LINGUISTICS

tam maram maɾam m a ɾ a m nio bî’ biːʔ b iː ʔ
mal maraṁ maɾam m a ɾ a m yrk ju’ juʔ j u ʔ
kan mara mara m a r a – sel köt køt k ø t

Figure 1.1: Left: Alignments for the Tamiḻ (tam), Malayāḷaṁ (mal) and Kannaḍa (kan) words for
‘tree’ (Burrow and Emeneau 1984); right: Alignments for the Nganasan (nio), Nenets (yrk) and Selkup
(sel) words for ‘ten’ (Janhunen 1977).

1.3.1.1 Step 1: Establish Cognate Sets
The first step is to find sets of cognates among the languages being investigated, i.e. words
that seem to be derived from the same ancestors (Campbell 2013; Crowley and Bowern
2010; Rankin 2003). Depending on the number and nature of the sound changes ob-
scuring the relationship between the languages, this can be easy or rather difficult: It is
obvious that Tamiḻ maram, Malayāḷaṁ maram and Kannaḍa mara (Dravidian), all mean-
ing ‘tree’, are cognates (Burrow and Emeneau 1984). Nganasan bî’, Nenets ju’ and Selkup
köt (Samoyedic), all meaning ‘ten’, may seem completely unrelated at first sight, even
though they have all developed rather regularly from Proto-Samoyedic *wüt (Janhunen
1977).

This example already illustrates that the comparative method is an iterative process: To
correctly identify all cognate sets, we need to know the sound changes that took place in
all of the languages. However, these sound changes cannot be derived without comparing
the members of cognate sets. In consequence, we will often come back to this step, finding
new cognate sets or discarding previous ones, after we have established new sound laws in
the later steps.

It is not always sufficient to look at words with the same meaning in all of the languages, as
with the above examples. Meanings of words change over time, just like their appearance.
English walk and German walken ‘to knead’ are both descendants of Proto-Germanic
*walkan ‘to roll’ despite their seemingly unrelated meanings (Kroonen 2013).

Another thing to look out for are loanwords. Consider Tamiḻ pasu, Malayāḷaṁ paśu and
Kannaḍa hasu, all meaning ‘cow’. These are clearly cognates and the word has partaken
in the regular sound change p > h / # _ in Kannaḍa. However, neither s nor ś can be
reconstructed as phonemes of Proto-Dravidian, as we will see in section 3.1. In fact, all
three languages have borrowed this word from Sanskrit paśu ‘cattle’ (cf. Monier-Williams
1899). If we did not know that the three languages are completely unrelated to Indo-
Aryan Sanskrit, but merely borrowed extensively from it, we could infer a wrong proto-
phoneme and sound law for Proto-Dravidian and even falsely assume a genetic relationship
between Dravidian and Indo-Aryan. Thus, after having applied the comparative method,
we also need to revisit the cognate set to identify loanwords by looking for sounds and
sound correspondences that are unexplainable given our current assumption about the
phonological features of the proto-language.

7

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

deu Stein ʃtaɪn̯ ʃ t aɪ ̯ – n Herz hɛɐ̯t͡s h ɛ ɐ̯ t͡s –
eng stone stəʊ̯n s t əʊ̯ – n heart hɑːt h ɑ ɑ t –
isl steinn stɛit̯n ̥ s t ɛi ̯ t n ̥ hjarta çɑrt̥ɑ ç ɑ r ̥ t ɑ
nld steen steːn s t eː – n hart ɦɑrt ɦ ɑ r t –

Figure 1.2: Alignments for the German (deu), English (eng), Icelandic (isl) and Dutch (nld) words for
‘stone’ (left) and ‘heart’ (right) (Dellert and Jäger 2017).

1.3.1.2 Step 2: Find Sound Correspondences
After the cognate sets have been compiled, the words of each cognate set are aligned so
that the sounds that probably correspond to each other in the different languages are all in
one column (Campbell 2013; Crowley and Bowern 2010; Rankin 2003). Figure 1.1 shows
such alignments for the Dravidian ‘tree’ and Samoyedic ‘ten’ examples from the previous
section. The symbol – is used when a language has no sound that corresponds to the
others in its column, either through deletion or insertion.

From these alignments we can directly derive the sound correspondences between our lan-
guages, i.e. the sets of sounds that have evolved from the same proto-sound (Campbell
2013; Crowley and Bowern 2010; Rankin 2003). In the example above, we get the corre-
spondences m/m/m, a/a/a, ɾ/ɾ/r, a/a/a and m/m/– for the three Dravidian languages
and b/j/k, iː/u/ø and ʔ/ʔ/t for the three Samoyedic languages.

Because human linguists have an intuitive understanding of which sounds are likely to
correspond to each other, cognates are usually not explicitly aligned in manual applica-
tions of the comparative method. For computational approaches, however, alignments are
indispensable, and automating this task is not trivial. The usual approach is to calculate
substitution, deletion and insertion costs for every pair of symbols and align the words in
such a way that the sum of these costs is minimized. However, since sounds can be more
(like /t/ and /d/) or less similar (like /t/ and /o/) to each other, a fixed substitution
cost is not feasible for phonetic alignment. Likewise, deletion and insertion is more likely
for some sounds than for other. An alignment implementation should therefore ideally be
informed about sound similarity and the likelihood of certain sound changes.

When the alignments and sound correspondences serve as input to another automatic
process, there are also a few notational issues to be considered beforehand. The first is
the question whether to treat long vowels and diphthongs as a single symbol or as sev-
eral distinct sounds. In phonetic descriptions, they are usually viewed as single phonemes
and often, this view is also reasonable for alignments. Consider the left alignment in
Figure 1.2 of the Germanic words for ‘stone’: It is clear that the German, English and
Icelandic diphthongs correspond to the Dutch long vowel and that there are no two cor-
respondences a/ə/ɛ/e and ɪ/̯ʊ̯/i/̯e. The diphthong was already there in Proto-Germanic
*staina (Kroonen 2013) and it has remained a bimoraic vowel in its descendants, so there
is no need to split them up.

Problems with this treatment arise when the long vowels or diphthongs have developed
from other sounds in some of the daughter languages. Consider the right alignment in
Figure 1.2: In German and English, the rhotic has been vocalized at the end of words and

8

1.3. The Comparative Method 1. COMPARATIVE LINGUISTICS

tam cāṟṟu t͡ɕaːtːu t͡ɕ aː tː u – – kañci kaɲt͡ɕi k a ɲ t͡ɕ i
mal cāṟṟuka t͡ɕaːtːuɡa t͡ɕ aː tː u ɡ a kaññi kaɲːi k a ɲ ɲ i
kan sāṟu saːru s aː r u – – gañji ɡaɲd͡ʑi ɡ a ɲ d͡ʑ i
tel cāṭu t͡ɕaːʈu t͡ɕ aː ʈ u – – ganji ɡãd͡ʑi ɡ a ̃ d͡ʑ i

Figure 1.3: Alignments for the Tamiḻ (tam), Malayāḷaṁ (mal), Kannaḍa (kan) and Telugu (tel) words
for ‘to publish, announce’ (left) and ‘rice gruel, starch’ (right) (Burrow and Emeneau 1984).

fin hiiri hiːri h iː r i nio śiti sʲiti sʲ i t i
est hiir hiːr h iː r – enf side side s i d e
krl hiiri hiːri h iː r i yrk сидя sʲidʲɑ sʲ i dʲ ɑ
vep hir’ hirʲ h i r ʲ sel šitti ̮ ɕitːɨ ɕ i tː ɨ

Figure 1.4: Left: Alignments for the Finnish (fin), Estonian (est), Karelian (krl) and Veps (vep) words
for ‘mouse’ (Dellert and Jäger 2017); right: Alignments for the Nganasan (nio), Enets (enf), Nenets
(yrk) and Selkup (sel) words for ‘two’ (Janhunen 1977).

before consonants, as in Herz and heart. This results in a diphthong in German and a long
vowel in (British) English. Here, it makes sense to split the diphthong and long vowel and
align their second parts to the rhotics in Icelandic and Dutch as ɐ̯/ɑ/r/̥r.

The same question has to be answered for geminate consonants. Are these single phonemes
or clusters of the same consonant? Treatment as a single unit is useful when a geminate
was shortened in some daughter languages, as in the left Dravidian alignment in Figure 1.3:
Here, Proto-Dravidian /tː/ became short /ɾ/ in Kannaḍa and short /ʈ/ in Telugu. It does
not seem particularly fitting to align them as if a second short /t/ had been deleted in these
two languages. On the other hand, geminates may often arise from consonant clusters, as
in the right alignment: Here, the /t͡ɕ/ in the Proto-Dravidian */kaɲt͡ɕi/ was assimilated to
/ɲ/ in Malayāḷaṁ, resulting in a sound correspondence t͡ɕ/ɲ/d͡ʑ/d͡ʑ that is clearly distinct
from the preceding ɲ/ɲ/ɲ/ .̃

Just as it often makes sense to separate long vowels or geminates, you might sometimes
want to split a diacritic from its base symbol. In the right alignment in Figure 1.3,
for instance, the nasalization of the first Telugu vowel has obviously developed from the
deleted nasal. In this case, it is more adequate to place the nasalization diacritic in place
of the following gap to receive an alignment ɲ/ɲ/ɲ/̃ instead of regarding õ as a single
unit. The left alignment in Figure 1.4 of the Finnic words for ‘mouse’ is another example
where it makes sense to treat the secondary articulation as a separate symbol: In Estonian
and Veps, the final /i/ has been deleted, but in Veps, it has left a trace in that the final
consonant has been palatalized. It seems fitting to therefore match the palatalization
diacritic with the final vowels in Finnish and Karelian.

In cases where the “triggering” phoneme is not deleted, however, it is more useful to group
the palatalization diacritic with its consonant, as in the right alignment in Figure 1.4 of the
Samoyedic words for ‘two’. In Nganasan and Nenets, the front vowel i and, only in Nenets,
the front vowel ä in Proto-Samoyedic *kitä (Janhunen 1977) have triggered palatalization
of the preceding consonants, but were not deleted in the process. It makes more sense

9

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

here to view the palatalization as a feature of the consonant instead of having two columns
with inserted palatalization diacritics.

When applying the comparative method manually, one can split these problematic com-
binations in one case and treat them as one in another, whichever makes more sense in
each case. When generating or processing these alignments automatically, however, we
have to settle on one treatment and apply it consistently. If we do not have the restricted
use case of a single language family, this will necessarily lead to unsatisfying solutions
for some alignments, and even within the same language family, conflicting treatments
may be demanded by different cognate sets, as underlined by the Germanic examples in
Figure 1.2.

1.3.1.3 Step 3: Reconstruct Proto Sounds
Using the sound correspondences found in the previous step, we can now reconstruct the
phoneme inventory of the proto-language (Campbell 2013; Crowley and Bowern 2010;
Rankin 2003). Under the regularity assumption, each sound correspondence is the output
of an exceptionless sound law that has applied to a proto-phoneme, and the nature of this
proto-phoneme can be inferred from the characteristics of its descendant sounds. Since
we know that sound laws are not always entirely regular and that our data might be
corrupted by false cognacy judgments, missing loanword annotations or bad alignments,
we will discard rare and “strange” sound correspondences until we can satisfyingly explain
them, and regard the more frequent correspondences first (Campbell 2013).

When all or the vast majority of sounds in a correspondence are the same, reconstructing
the proto-phoneme is straightforward (Campbell 2013; Crowley and Bowern 2010; Rankin
2003). It is clear that the ancestor of the correspondence m/m/m observed in the Dravidian
words for ‘tree’ in Figure 1.1 is */m/. Similarly, the proto-phonemes for initial t͡ɕ/t͡ɕ/s/t͡ɕ
and p/p/h/p in the Dravidian correspondences in Figure 1.3 are likely /t͡ɕ/ and /p/.

The “majority vote” is not always correct, though. There are sound changes that occur
frequently among the languages of the world (Campbell 2013; Crowley and Bowern 2010),
such as stops turning into fricatives at the same (or a similar) place of articulation (spi-
rantization), as in the Kannaḍa changes p > h and t͡ɕ > s just mentioned. Then there
are sound changes that are almost never observed, such as the reverse of spirantization:
Stops rarely develop out of fricatives, so if we had a correspondence h/h/p/h instead,
we would still be inclined to reconstruct a /p/ as the proto-sound, because the change
h > p is just too unlikely. For the same reasons, the most likely proto-candidate for the
Samoyedic correspondence ʔ/ʔ/t in Figure 1.1 is /t/ and not /ʔ/: It is quite common for
stops to be reduced to a glottal stop, but a glottal stop does usually not change its place
of articulation.

In other cases, the proto-sound might not have been preserved in any of its descendants.
While we should normally refrain from reconstructing phonemes unattested in our corre-
spondences (Crowley and Bowern 2010), the sounds that we can observe in the daughter
language are sometimes all unsatisfying proto-candidates. The Samoyedic correspondences
b/j/k and iː/u/ø from the word for ‘ten’ in Figure 1.1 are such a case: If we assume any
of the involved sounds as the proto-sound, we always get at least one improbable sound

10

1.3. The Comparative Method 1. COMPARATIVE LINGUISTICS

change. To resolve this, we compare the features of the observed sounds: Of the three
vowels, two are round, two are high and two are front. This suggests /y/ as the proto-
candidate. Among the consonants, we observe a labial, a velar and an approximant sound.
A phoneme that combines these three features would be the labio-velar approximant /w/.
While the sound changes w > b and w > j / _ [+front] are plausible, w > k is still un-
usual. If we look at what happens to the palatal approximant /j/ in Selkup, however,
we find evidence that it also becomes a voiceless obstruent, as in Nganasan je, Nenets
e, Selkup čö ‘jaw’ (Janhunen 1977). Since sound changes often apply to several sounds
of the same type analogically, this observation increases the likelihood of Selkup w > k,
making /w/ a plausible proto-sound for b/j/k. Indeed, the Proto-Samoyedic word for ‘ten’
is reconstructed as *wüt in the literature (Janhunen 1977).

This example shows that it is not sufficient to only regard the sound correspondence in
question. The direct and wider context of a correspondence can give important hints as to
which kind of sound is the most likely proto-reconstruction: Neighboring sounds, patterns
across the entire word (such as vowel harmony) and analogical sound correspondences
and changes should be consulted to arrive at a satisfying solution. Even more generally,
newly assumed proto-sounds should keep the entire reconstructed proto-phoneme inven-
tory plausible: Languages generally prefer balanced or “symmetric” vowel and consonant
inventories, and there seem to be universal tendencies to include certain sound types as well
as dependencies between the occurrences of some groups of sounds (Campbell 2013; Crow-
ley and Bowern 2010). While these restrictions are usually not absolute, proto-inventories
should not violate them without good reason.

1.3.1.4 Step 4: Detect Environments for Conditioned Sound Change
The sound correspondences together with their proto-reconstructions directly yield the
first simple sound laws (Campbell 2013; Crowley and Bowern 2010; Rankin 2003). From
the Finnic correspondence iː/iː/iː/i (cf. Figure 1.4) we can infer the unconditioned sound
change iː > i for (South and Central) Veps and, with the evidence from other vowel cor-
respondences, the more general [+long] > [-long] (Tuisk 2010). More often, however, the
underlying sound changes are conditioned. The usual signal for this is that two or more
sound correspondences are in complementary distribution, i.e. occur in mutually exclusive
contexts (Campbell 2013; Crowley and Bowern 2010; Rankin 2003).

Usually, a sound law has only affected some of the languages compared. In such cases, the
complementary sound correspondences are very similar, differing only in a few sounds. In
Figure 1.2, for example, we have the sound correspondence t/t/t/t in the left alignment,
but t͡s/t/t/t in the right alignment for the four Germanic languages. While it is possible
that the second correspondence has descended from Proto-Germanic */t͡s/, we have hope-
fully considered */t/ as the more likely proto-candidate. This is a problem: Under the
regularity assumption, */t/ cannot have remained /t/ in one German word but randomly
changed to /t͡s/ in another. This must be a case of conditioned sound change.

When investigating the environments of the correspondences t/t/t/t and t͡s/t/t/t, we find
that the mutation of single */t/ occurs word-initially (as in Zahn [t͡saːn] ‘tooth’ < *tanþ),
after a liquid, i.e. /l/ or /r/ (as in Herz above), and when it is geminate (as in Schatz

11

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

‘treasure’ < *skatta-; Kroonen 2013). In the remaining cases, such as word-medially or
after different consonants (as in Stein), we find German /t/. Thus, we can postulate the
sound laws t > t͡s / # _ , t > t͡s / [+liquid] _ and tː > t͡s for German (the implicit default
case being t > t for all remaining contexts).

Sometimes, however, a conditioned sound law has affected all or almost all daughter lan-
guages, obscuring the original proto-sound. The conditioned sound change might not be
obvious in such a case, because the complementary sound correspondences might have
nothing in common. The Samoyedic correspondence sʲ/s/sʲ/ɕ in Figure 1.4 is an exam-
ple of this: It can seem straightforward to reconstruct */s/ or */sʲ/ as a proto-sound.
When examining the environments in which this sound correspondence is found, though,
we find that its occurrence is highly restricted to the position before */i/ and */e/. It is
unlikely that */s/ or */sʲ/ exclusively occurred before these sounds in Proto-Samoyedic,
so this might be a case of conditioned sound change. Searching for complementary sound
correspondences, we end up with the following set3 (Janhunen 1977):

• sʲ/s/sʲ/ɕ before */i/, */e/
• k/s/sʲ/ɕ before */y/, */ø/
• k/s/sʲ/q before */æ/
• k/k/χ/k before */u/
• k/k/χ/q before */ɑ/, */o/

It seems that the proto-sound for all these correspondences is actually */k/ and that
palatalization took place in all four Samoyedic languages to varying degrees: Nganasan
palatalized */k/ only before */i/ and */e/, Selkup before all non-low front vowels and
Enets and Nenets before all front vowels. In addition, /k/ became /χ/ before back vowels
in Nenets and /q/ before non-high vowels in Selkup. Overall, the correspondences above
yield six conditioned sound laws to deal with Proto-Samoyedic */k/ in its four daughter
languages.

While such a sound change is still rather easy to resolve for a human linguist despite its
complexity, especially since the occurrence of a sibilant before front vowels should always
be a warning flag for anyone trained in historical linguistics (the palatalization of /k/ to
a sibilant is an extremely frequent sound change), a computer could have its difficulties
with the above example. Since there are so many complementary correspondences that
occur in such restricted contexts, the evidence in the data is sparse. In Janhunen’s (1977)
Samoyedic etymological dictionary, for example, there is just a single entry for word-initial
*/kø/ and five for */ky/, of which only two list reflexes for all four languages. This might
not be enough for a system to recognize the correspondence k/s/sʲ/ɕ as regular instead of
sorting it out as noise stemming from false cognacy judgments or wrong alignments. We
should also not let our program try to unify arbitrarily many complementary correspon-
dences to keep it from explaining a set of rare nonsensical correspondences as conditioned
sound change.

3Restricted to word-initial correspondences to keep the example “simple”: Other sound laws applying
intervocally result in a different correspondence set for word-medial environments.

12

1.3. The Comparative Method 1. COMPARATIVE LINGUISTICS

1.3.1.5 Step 5: Verify Your Theory
The comparative method is an iterative process (Campbell 2013; Rankin 2003), and after
completing step 4, one will usually apply it again based on the newly gained insights. The
discovered sound laws can lead to different cognacy judgments: A word that was previ-
ously considered inherited may now be classified as a loanword when it violates common
sound changes. Alignments can be readjusted based on the regular sound correspondences
that were identified. Proto sound reconstructions might have to be reconsidered when they
violate the symmetry of the proto-language’s phoneme inventory, while gaps in the inven-
tory can give hints for sound correspondences of previously doubtful origin. Therefore,
the comparative method should be applied over and over, until the descendant languages’
data can be satisfyingly explained with respect to the developed proto-language (which
may never be the case).

1.3.2 Shortcomings
The crucial premise of the comparative method is the regularity of sound change, the
problem with which I have already discussed in section 1.2: Sound change is not, in fact,
entirely regular or without exception; it can operate in different dialects of a language to
different extents, may affect only parts of the lexicon, or be conditioned on non-phonetic
factors. Therefore, there will always be phonetic forms in modern languages that cannot
be explained by way of the comparative method.

To understand more of these residual phenomena, one often has to turn towards social
or cultural factors instead of purely linguistic ones. Language contact can not only alter
the lexicon via word borrowing: A group of languages from several unrelated families may
form a Sprachbund (linguistic area), sharing phonological and grammatical characteristics
that can give the impression of relatedness (Aikhenvald and Dixon 2001; Harrison 2003;
Campbell 2013). Phonemes may be borrowed and even incorporated into native material
for a variety of reasons: The Bantu languages of Southern Africa, for example, presumably
borrowed click consonants from the surrounding Khoisan languages to adhere to linguistic
taboo or mark their identity (Daneyko and Bentz 2019). Finally, the phonological features
of surrounding prestigious languages can influence the outcome of sound change, making
the introduction of sounds prominent in these languages more likely than they would
normally be, as seems to be the case e.g. for the overly frequent development of tones in
Mainland South-East Asia and Sub-Saharan Africa (Aikhenvald and Dixon 2001).

The most definite limit of the comparative method is the time depth to which it can be
applied (Aikhenvald and Dixon 2001; Harrison 2003). Since languages change constantly,
cognacy gets harder to detect the earlier the languages diverged, and with that, the com-
parative method becomes more difficult to apply. The time depth up to which we can
reliably reconstruct proto-languages has often been cited to be about 8, 000 years back,
though this depends strongly on the rate of sound change which is higher for some lan-
guages than for others (Aikhenvald and Dixon 2001; Harrison 2003). It is clear that an
8, 000 years old proto-language reconstructed using the comparative method is merely an
artificial construct that will more or less closely resemble the language as it was spoken at
that time (provided that it even existed).

13

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

Despite its limitations, “the comparative method is arguably the most stable and successful
of all linguistic methodologies” (Rankin 2003, p. 208), still being widely applied over a
century after its introduction. Even though sound changes are not regular per se, they
become quasi-regular after enough time has passed for them to be applied throughout the
whole lexicon, which is often the case (Harrison 2003). This provides enough of a basis
for the comparative method to work quite reliably.

1.4 Lexical Databases
The only prerequisite for the comparative method is the availability of lexical material
for the daughter languages. This need and the increasing application of computational
methods in historical linguistics has given rise to a number of lexical databases providing
translations of a predefined list of concepts for a large number of languages in a unified
format. The concepts selected for these lists are usually intended to be basic, in that they
have equivalents in most languages, and stable, in that they are rarely subject to change
or borrowing. The number of concepts varies greatly between databases, from 40 in
the wide-coverage Automated Similarity Judgment Program database (ASJP; Wichmann,
Holman, and Brown 2020), ∼ 210 in the Austronesian Basic Vocabulary Database (ABVD;
Greenhill, Blust, and Gray 2008), 225 in the Indo-European Lexical Cognacy Database
(IELex; Dunn 2015), 607 in the Indonesian-based LexiRumah (Kaiping and Klamer 2019),
to ∼ 1, 000 – 2, 000 in the World Loanword Database (WOLD; Haspelmath and Tadmor
2009). While 100 – 200 lexical items per language indeed seem to be optimal for inferring
language relatedness and phylogenies (Rama andWichmann 2018), automatically applying
the comparative methods to yield a complete set of sound laws probably requires more
data.

1.4.1 NorthEuraLex
The source material for SoInEn is provided by NorthEuraLex, a recently developed database
focusing on the languages spoken in Northern Eurasia (Dellert and Jäger 2017; Dellert,
Daneyko, et al. 2020). Each of the 107 languages in the current version (0.9) covers a
list of 1, 016 concepts, which should constitute a good basis for detecting sound corre-
spondences and deriving sound laws. Since the goal of NorthEuraLex is to also provide
data for exploring language contact, the concept list it builds on is not restricted to basic
vocabulary, but also contains concepts commonly borrowed, such as month names.

NorthEuraLex provides IPA transcription for all languages, which is generated automati-
cally on the basis of handcrafted rules derived from phonological descriptions. These are
supposed to produce the actual pronunciation of the language, not a phonemic representa-
tion, also modeling language-internal phonological processes such as assimilation or final
devoicing. The phonetic transcription of the resulting data is thus very detailed, exceeding
the basic phonemic representations usually used as input to the comparative method. It
will be interesting to see how an automated system handles this.

In its current version, NorthEuraLex provides no cognate set or loanword annotations for
its data, leaving this step of the comparative method to be solved computationally as

14

1.5. Automating the Comparative Method 1. COMPARATIVE LINGUISTICS

well. Resolving this issue will be particularly important considering the potentially higher
density of loanwords compared to other lexical databases.

1.5 Automating the Comparative Method
Most applications in computational linguistics that relate to parts of the comparative
method are centered around cognacy detection. These implementations usually proceed
in two steps – measuring word pair similarity and clustering the most similar words into
cognate sets – and differ primarily in the methods used to perform these two separate
tasks. One of the most prominent linguistically motivated implementations is the LexStat
algorithm of List (2012), which builds on Turchin, Peiros, and Gell-Mann’s (2010) approach
to convert the original word forms using a heavily reduced set of consonant-only symbols
(consonant-class matching/CCM) before computing similarity scores. LexStat and an
extension for detecting partial cognacy (List, Lopez, and Bapteste 2016) are included
in the widely-used Python package LingPy which unifies several tools for computational
historical linguistics (List and Moran 2013). Rama and List (2019) build on the CCM
approach as well, but relax the strict matching condition by using skip-grams. Most of the
other recent cognate detection systems are based on machine learning, however (e.g. Hall
and Klein (2010), Rama (2016), Jäger, List, and Sofroniev (2017), Rama, Wahle, et al.
(2017), Hämäläinen and Rueter (2019), and Labat and Lefever (2019)).

The related task of loanword detection has generally received less treatment. Many imple-
mentations focus on detecting borrowing between specific unrelated languages or language
families (e.g. Mi, Yang, Zhou, et al. (2016), Mi, Yang, Wang, et al. (2018a), and Mi, Yang,
Wang, et al. (2018b) for Chinese, Russian and Arabic loans in Uyghur; or Mennecier et al.
(2016) for borrowings between Turkic and Indo-Iranian languages), usually building on the
assumption that words of similar form and meaning shared by unrelated languages must
be loanwords. The LingPy implementation is language-independent, but also attributes
loanword status to detected “cognates” between different branches of a given language tree
only (List and Moran 2013). Similarly, Köllner and Dellert (2016) consider a word for a
concept borrowed when the direct ancestor’s translation of that concept is in a different
cognate set, which does not capture all possible types of intra-family borrowings either.
Minett and Wang (2003) directly aim at detecting loanwords between related languages,
but proceed similarly to the LingPy implementation, with the difference that they infer
the family tree themselves in the process.

Much less work in computational historical linguistics has been done on proto-form recon-
struction and sound law inference. One of the earliest attempts to reproduce the compar-
ative method computationally was by Lowe and Mazaudon (1994), who implemented the
“Reconstruction Engine”, a program that could infer cognate sets and proto-forms from
modern lexical data, but which also required the user to provide the regular sound cor-
respondences with their proto-phonemes. A more holistic approach was chosen later by
Oakes (2000), who employed dynamic programming algorithms to perform cognacy judg-
ments, alignment, sound correspondence detection, proto-phoneme reconstruction and,
finally, proto-word reconstruction for Proto-Malayo-Javanic. While his method was able

15

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

to detect when sound changes were conditioned, he did not derive the contexts in which
they occurred.

More recent attempts to automate (parts of) the comparative method do not stick so
closely to the manual procedure: List (2019a) infers regular sound correspondences by
reducing the task to the minimum clique cover problem from graph theory, but did not
take the next step of reconstructing proto-phonemes. Bouchard-Côté et al. (2013) employ
probabilistic model of sound change combined with a Monte Carlo inference algorithm
for (optionally) cognate detection and proto-form reconstruction, also producing sound
changes for individual cognate sets along the way, though these are not the primary tar-
get. Finally, Hruschka et al. (2015) set out to infer unconditioned sound laws for the
Turkic languages using a Markov Chain Monte Carlo model, adopting ideas from biology
pertaining to the concept of concerted evolution.

Overall, a system that models the comparative method in its entirety up to the production
of sound laws has yet to be implemented. Recent approaches to proto-reconstruction and
sound law inference have diverged from the original method, instead leveraging algorithms
from biology or machine learning. In particular, the automated detection of conditioned
sound laws is currently completely unsolved to my knowledge.

16

2 Probabilistic Soft Logic

Probabilistic Soft Logic (PSL) is a reasoning framework over probabilistic graphical models
that are specified using first-order logic rules with soft truth values in the interval [0, 1].
These rules can be translated into hinge-loss Markov random fields (HL-MRFs), for which
most probable variable assignments can be found using fast, accurate and highly scalable
optimization algorithms (Bach et al. 2017).

The PSL implementation used by the EtInEn group and for the model presented in this
thesis was developed by the LINQS group (LINQS Research Group 2018) and is available
as an open source Java library which provides fast, efficient algorithms for inference and
rule weight learning, supporting multi-threading and different SQL database backends. It
is still in active development with new improved releases coming out regularly. For my
thesis project, I am using version 2.1.0 of LINQS PSL.

In section 2.1, I introduce the syntax of the PSL modeling language in which the predicates
and rules of the PSL models are specified. Some rule engineering techniques specific to
the LINQS implementation and their grounding process are discussed in section 2.2. I
will then explain how these first-order logic rules are translated into HL-MRFs for efficient
inference in section 2.3. Finally, in section 2.4, I discuss why PSL is a promising framework
for historical linguistics.

2.1 PSL Syntax
This section introduces the PSL modeling language. It mainly revolves around two con-
cepts: The individual facts, represented by predicates or, more specifically, atoms, and
the rules that relate these facts to each other.

2.1.1 Predicates and Atoms
A PSL predicate is a relation over a fixed number of terms (as specified by its ar-
ity). PartOfSpeech, for example, could be a predicate with arity 4 for a part-of-speech

17

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

tagger, the arguments being a sentence id, the index of a word in that sentence, the
word itself, and its part of speech. In rules, this predicate can be referred to as e.g.
PartOfSpeech(SentenceID, Idx, Word, PoS), where SentenceID, Idx, Word and PoS are
variables, placeholders for actual values to be inserted. The arity can be any positive
integer.

A (ground) atom then is an actual instance of a predicate where constant values have been
inserted for the variables. Examples of atoms for PartOfSpeech are PartOfSpeech("1",
"3", "tree", "noun") or PartOfSpeech("13", "5", "small", "adjective"). In LINQS
syntax, constants are given in quotation marks to distinguish them from variables. An
atom is associated with a belief value in the range [0, 1] that specifies the current truth
value of the relation encoded by the atom. Belief values are either specified beforehand or
inferred by the system.

Atoms with a fixed belief value are called observations. They are the input to the PSL
model: Known facts that can be used to draw conclusions over the unknown data, the
target atoms, whose belief values are inferred by PSL. Both observations and targets
must be specified by the user, since PSL cannot be expected to come up with plausi-
ble ideas for targets on its own. In our PSL part-of-speech tagger, we could, for in-
stance, enter PartOfSpeech("1", "3", "tree", "noun") and PartOfSpeech("13", "5",
"small", "adjective") as observations with belief value 1, since we know the parts
of speech for these words for sure, but PartOfSpeech("4", "4", "walk", "noun") and
PartOfSpeech("4", "4", "walk", "verb") as targets and let PSL infer the part of speech
of “walk” in sentence 4.

The LINQS implementation additionally distinguishes closed and open predicates. Atoms
of closed predicates are always observations with fixed belief values, while atoms of open
predicates can be either targets or observations. These two types of predicates have further
distinctive properties inside ground rules, as will be explained in section 2.2.2.

2.1.2 Rules
The dependencies between atoms of different predicates are specified as rules. Next to
logical rules, it is possible to impose equality or inequality rules on the belief values of
atoms that cannot be captured by first-order logic. Rules can be hard constraints or
violable weighted rules.

2.1.2.1 Logical Rules
The most straightforward way of specifying PSL logical rules is the implication, the corre-
sponding operator being ‐> or <‐. This rule, for instance, encodes the idea that if a word
was of some part of speech in one sentence, it is likely that it has the same part of speech
in another sentence:
PartOfSpeech(SentenceID1, Idx1, Word, PoS) ‐> PartOfSpeech(SentenceID2,

Idx2, Word, PoS)

18

2.1. PSL Syntax 2. PROBABILISTIC SOFT LOGIC

I refer to atom “templates” inside rules, like PartOfSpeech(SentenceID1, Idx1, Word,
PoS), as literals, since they refer to a specific restricted set of atoms.

The antecedent of an implication can also be a conjunction (& or &&) of several predicates,
while the consequent may be a disjunction (| or ||). The following two rules specify that
if a word is preceded by a determiner, it is likely a noun, and if it is preceded by an
adjective, it is likely a noun or another adjective:
PartOfSpeech(S, I1, W1, "determiner") & NextInteger(I1, I2) ‐>

PartOfSpeech(S, I2, W2, "noun")
PartOfSpeech(S, I1, W1, "adjective") & NextInteger(I1, I2) ‐>

PartOfSpeech(S, I2, W2, "noun") | PartOfSpeech(SentenceID, I2, W2,
"adjective")

The antecedent of an implication may not contain a distinction. Likewise, conjunctions
are disallowed in the consequents. The background of this is that internally, PSL operates
only on purely disjunctive clauses. Before inference, implications therefore have to be
converted into disjunctive clauses as well. The adjective rule above, for example, can be
rewritten as (~ or ! being the negation operator):

PartOfSpeech(S, I1, W1, "adjective") & NextInteger(I1, I2) ‐> PartOfSpeech(S,
I2, W2, "noun") | PartOfSpeech(SentenceID, I2, W2, "adjective")

≡ ~(PartOfSpeech(S, I1, W1, "adjective") & NextInteger(I1, I2)) | PartOfSpeech(S,
I2, W2, "noun") | PartOfSpeech(SentenceID, I2, W2, "adjective")

≡ ~PartOfSpeech(S, I1, W1, "adjective") | ~NextInteger(I1, I2) | PartOfSpeech(S,
I2, W2, "noun") | PartOfSpeech(SentenceID, I2, W2, "adjective")

Logical rules can also be given in their disjunctive form directly.

2.1.2.2 Arithmetic Rules
Dependencies between atoms can also be modeled as equality (using operator =) or inequal-
ity (<= or >=) rules. In these arithmetic rules, the literals on each side of the (in-)equation
are not connected by logical operators, but by the arithmetic operators + and ‐ (plus *
and / in combination with scalars). The following rule, for instance, specifies that the
sum of all belief values for parts of speech “noun”, “verb” and “adjective” of a single word
must add up to 1, i.e. the model must choose exactly one of these parts of speech for a
word:
PartOfSpeech(S, I, W, "noun") + PartOfSpeech(S, I, W, "verb") +

PartOfSpeech(S, I, W, "adjective") = 1

Having to explicitly write out all parts of speech is rather inconvenient and often, it might
not even be possible to enumerate all values, which is why there is a way to sum over all
possible values a variable can take. In the following rule, PartOfSpeech(S, I, W, +PoS)
is called the summation atom, since it sums over all existing atoms (observations and
targets) with some constant inserted for the sum variable PoS:
PartOfSpeech(S, I, W, +PoS) = 1

19

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

The number of different constant insertions for a sum variable SumV can be referred to in
a rule as the cardinality |SumV|. This can be used, for example, to extract the part of
speech frequencies for each sentence:
PoSFrequency(PoS, Sentence) = PartOfSpeech(Sentence, +Idx, +Word, PoS)

/ |Idx|

Note that this only works when there are PartOfSpeech atoms for each word and possible
part of speech (the implausible parts of speech then set to 0.0), since PartOfSpeech(Sen‐
tence, +Idx, +Word, PoS) will only sum over existing atoms. For example, let’s say we
only have the following atoms for the sentence “she saw him”, because the parts of speech
of “she” and “him” were not inferred over:
PartOfSpeech("1", "1", "she", "pronoun") = 1.0
PartOfSpeech("1", "2", "saw", "noun") = 0.0
PartOfSpeech("1", "2", "saw", "verb") = 1.0
PartOfSpeech("1", "3", "him", "pronoun") = 1.0

In this case, PoSFrequency("verb", "1") will have a belief of 1.0, because:
PoSFrequency("verb", "1") = PartOfSpeech("verb", +Idx, +Word, "1") / |Idx|

≡ PoSFrequency(PoS, Sentence) = PartOfSpeech("1", "2", "saw", "verb") / 1

If we additionally had the atoms PartOfSpeech("1", "1", "she", "verb") and PartOf‐
Speech("1", "3", "him", "verb"), both set to 0.0, PoSFrequency("verb", "1") would
get the correct belief value, 0.3, because:

PoSFrequency("verb", "1") = PartOfSpeech("verb", +Idx, +Word, "1") / |Idx|
≡ PoSFrequency(PoS, Sentence) = (PartOfSpeech("1", "1", "she", "verb") +

PartOfSpeech("1", "2", "saw", "verb") + PartOfSpeech("1", "3", "him", "verb"))
/ 3

≡ PoSFrequency(PoS, Sentence) = (0.0 + 1.0 + 0.0) / 3

Cardinalities in rules are therefore only of limited use when there is a large number of can-
didate targets for a predicate that you do not want to spell out completely for performance
reasons.

Even when all combinations of constants exist for a summation atom, the number of
matched atoms can be restricted by filter clauses, logical clauses applied to a sum variable.
Only those constants that fulfill the filter clause can be inserted for the sum variable. For
our PoSFrequency, we could, for example, exclude stop words:
PoSFrequency(PoS, Sentence) = PartOfSpeech(Sentence, +Idx, +Word, PoS)

/ |Idx| {Word: ~StopWord(Word)}

In the LINQS implementation, filter clauses are evaluated using hard logic, i.e. with truth
values of either 0 or 1, where all non-zero belief values are rounded up to a truth value of 1.
For this reason, both conjunctions and disjunctions can be used in the filter clause. Also,
only literals of closed predicates may appear in a filter clause, but no explicit equations
or inequations (like SumV = "SomeValue"). All variables appearing in the filter clause,

20

2.2. The LINQS Grounding Process 2. PROBABILISTIC SOFT LOGIC

apart from the sum variable, must be non-sum variables also occurring in the associated
arithmetic expression.

2.1.2.3 Rule Weight
By default, PSL rules are unweighted rules, also called hard constraints. They are always
enforced and atoms are not allowed to violate them. To explicitly mark a rule as a
constraint, one can append a dot to the rule:
PartOfSpeech(S, I, W, +PoS) = 1 .

In the LINQS implementation, constraints can sometimes be violated, for example when
there are several contradictory constraints, which are not prevented or even reported by
the system. It is therefore advised to keep the number of constraints low and manually
check if any conflicts could arise between constraints to prevent unwanted effects.

Weighted rules, on the other hand, are explicitly allowed to be violated. The weight of a
rule determines its precedence over other rules, or, put differently, how much a violation
of this rule is penalized by the system. Weights can be any positive real number, where
higher weights signify higher importance or higher penalization of violation. They can be
specified explicitly followed by a colon at the beginning of a rule, as in:
2.0: PartOfSpeech(S, I1, W1, "determiner") & NextInteger(I1, I2) ‐>

PartOfSpeech(S, I2, W2, "noun")

The hierarchy between differently weighted rules is rather strict by default, leading to
a “winner take all” situation in the sense that the highest weighted rule is attempted to
be satisfied before lower weighted rules are considered. The reason for this lies in the
mathematical model behind PSL, which is explained in section 2.3. To achieve a smoother
hierarchy, ^2 (the significance of which will also be covered in section 2.3) can be appended
to a weighted rule:
2.0: PartOfSpeech(S, I1, W1, "determiner") & NextInteger(I1, I2) ‐>

PartOfSpeech(S, I2, W2, "noun") ^2

The LINQS implementation comes with several learning algorithms for learning weights
from gold standard data. I am working with manually tuned weights in my own model,
however.

2.2 The LINQS Grounding Process
Grounding is the process of substituting the literals in rules with matching ground atoms
and converting logical rules into disjunctive form. A ground rule then is a rule that contains
only ground atoms. Before inference, all rules have to be grounded. An example for a
grounding of the determiner-noun rule is:
2.0: ~PartOfSpeech("1", "4", "the", "determiner") | ~NextInteger("4",

"5") | PartOfSpeech("1", "5", "tree", "noun") ^2

21

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

Summing atoms are also spelled out explicitly. If the only part of speech candidates for
“tree” were “noun” and “verb”, a grounding for the rule PartOfSpeech(S, I, W, +PoS) =
1 . would be:
PartOfSpeech("1", "5", "tree", "noun") + PartOfSpeech("1", "5", "tree",

"noun") = 1 .

Understanding the grounding process of the LINQS implementation is important for writ-
ing rules that behave as intended. This section therefore discusses how LINQS assembles
the ground rules and the sometimes puzzling behavior that results from it, as well as some
design patterns the EtInEn group has developed to facilitate the development of large PSL
models.

2.2.1 Grounding Variables
Consider the following rule:

~P1(A, B) & P2(A, C) ‐> P3(B, C) ≡ P1(A, B) | ~P2(A, C) | P3(B, C)

LINQS will throw an error when adding this rule to the model:
IllegalArgumentException: Any variable used in a negated

(non‐functional) predicate must also participate in a positive
(non‐functional) predicate. The following variables do not meet
this requirement: [B].

This error message is misleading, because it refers to the negated disjunctive normal form
(nDNF) of the rule, which is the conjunction ~(P1(A, B) | ~P2(A, C) | P3(B, C)) ≡
~P1(A, B) & P2(A, C) & ~P3(B, C). Here, B occurs only in negated literals. The following
rules would both be fine, since B is now covered by P4:
~P1(A, B) & P2(A, C) & P4(B) ‐> P3(B, C)
~P1(A, B) & P2(A, C) ‐> P3(B, C) | ~P4(B)

}
~→ ~P1(A, B) & P2(A, C) & ~P3(B, C) & P4(B)

To ground a rule, LINQS retrieves all valid combinations of ground atoms from its atom
database that can be inserted for the positive literals in the nDNF of the rule. In case
of the above rule(s), for example, LINQS will query its database for all possible atom
pairs (P2(A, C), P4(B)). For each such tuple of ground atoms, a ground rule is created
where the constants of the retrieved atoms are substituted for the variables occurring in
both positive and negative literals of the rule. If the system has, for instance, found the
pair (P2("foo", "bar"), P4("baz")) in the database, yielding the variable assignments A
= "foo", B = "baz" and C = "bar", it will create the ground rule:

~P1("foo", "baz") & P2("foo", "bar") & ~P3("baz", "bar") & P4("baz")≡ P1("foo",
"baz") | ~P2("foo", "bar") | P3("baz", "bar") | ~P4("baz")

This is the reason for the requirement that every argument must appear in a positive
literal of the nDNF: If one does not, there is no ground atom containing it retrieved from
the database and the system does therefore not know its value.

22

2.2. The LINQS Grounding Process 2. PROBABILISTIC SOFT LOGIC

To circumvent this restriction, the EtInEn group has introduced the concept of existential
predicates. These are closed predicates that match the arguments of another predicate that
may occur only negated in some rule. Whenever an atom for the main predicate is inserted
into the database, an atom for the existential predicate with the exact same arguments
is inserted as well with belief 1.0. Existential predicates can be read as “there exists an
atom for predicate <main> with these arguments”. Consider the determiner-noun rule
again:
PartOfSpeech(S, I1, W1, "determiner") & NextInteger(I1, I2) ‐>

PartOfSpeech(S, I2, W2, "noun")

This rule will actually be rejected by LINQS, because the argument W2 only occurs in
a negated literal in the nDNF. To resolve this, we introduce an existential predicate
ExistsPartOfSpeech and rewrite the rule as:
PartOfSpeech(S, I1, W1, "determiner") & NextInteger(I1, I2) &

ExistsPartOfSpeech(S, I2, W2, "noun") ‐> PartOfSpeech(S, I2, W2,
"noun")

All arguments of the negated PartOfSpeech(S, I2, W2, "noun") are now matched by a
positive literal in the nDNF and the rule can be successfully grounded.

2.2.2 Grounding Open and Closed Predicates
That LINQS requires all arguments to occur in positive literals in the nDNF may seem
like a limitation, but it can also be a feature. Remember that it retrieves only the positive
atoms from the database and generates all negative atoms on the fly without checking if
they were actually entered by the user. The following rule states that a symbol which is
pronounced unvoiced, alveolar and as a stop must correspond to the phoneme [t]:
~IsVoiced(Symbol) & HasPlace(Symbol, "alveolar") & HasManner(Symbol,

"stop") ‐> IsPronouncedAs(Symbol, "t")

Let’s assume IsPronouncedAs is open while the other predicates are closed, and we have
entered the following atoms:
HasPlace("т", "alveolar") = 1.0
HasManner("т", "stop") = 1.0
IsPronouncedAs("т", "d")
IsPronouncedAs("т", "t")

No atom has been entered for IsVoiced. However, IsVoiced and IsPronouncedAs are
negated in the nDNF of this rule, so their atoms are not retrieved from the database
during grounding. LINQS is therefore able to generate the following ground rule and run
an inference on it:
~IsVoiced("т") & HasPlace("т", "alveolar") & HasManner("т", "stop") ‐>

IsPronouncedAs("т", "t")

23

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

The non-existing IsVoiced("т") is treated as having belief value 0.0 and the system
correctly concludes that IsPronouncedAs("т", "t") = 1.0. However, when we declare
IsVoiced as an open predicate, e.g. because the more general phonetic properties of the
symbols are also supposed to be inferred, we are presented with an error message after
grounding:
PersistedAccessException: Can only call getAtom() on persisted

RandomVariableAtoms (RVAs) using a PersistedAtomManager. Cannot
access ISVOICED('т'). This typically means that provided data is
insufficient. An RVA (atom to be inferred (target)) was constructed
during grounding that does not exist in the provided data.

The grounding was successful, but the automatically generated atom IsVoiced("т") does
not actually exist in the database. This poses a problem when the atom’s predicate is
open, because this means that its belief value can be changed during inference. The new
belief value must be written back into the database, which is impossible when it does
not contain the atom, since PSL is not allowed to create atoms on its own. For closed
predicates, this is not problematic, because their belief values cannot change anyway, so
they are never attempted to be written back.

Existential predicates partially solve this problem as well. We can rewrite the rule as
follows:
ExistsIsVoiced("т") & ~IsVoiced("т") & HasPlace("т", "alveolar") &

HasManner("т", "stop") ‐> IsPronouncedAs("т", "t")

LINQS no longer grounds rules with non-existing IsVoiced atoms. This means that the
error above is no longer thrown, but it also means that this rule does not influence the
belief value of IsPronouncedAs("т", "t") anymore. In the worst case, we end up with no
evidence for or against IsPronouncedAs("т", "t") at all. Wherever feasible, one should
therefore insert all possible atoms for an open predicate and fix them to 0.0 belief if
necessary rather than omit them.

2.2.3 Priors as Replacement for Negative Evidence
Unfortunately, it is not always viable to spell out all possible atoms for a predicate. Con-
sider the following two rules:
1.0: Trigram(Left, Target1, Right) & Trigram(Left, Target2, Right) ‐>

SimilarContexts(Target1, Target2)
1.0: Trigram(Left, Target1, Right) & ~Trigram(Left, Target2, Right) ‐>

~SimilarContexts(Target1, Target2)

These two rules model whether two words occur in similar contexts. The first rule pro-
vides positive evidence, boosting SimilarContexts whenever the two target words are
observed in the same contexts, and the second rule provides negative evidence, weakening
SimilarContexts whenever there is an unshared context.

24

2.3. Hinge-Loss Markov Random Fields 2. PROBABILISTIC SOFT LOGIC

It is not feasible to have 0.0 belief Trigrams for every possible combination of three words.
Usually, you would only want to insert those trigrams that are actually observed. As long as
Trigram is a closed predicate though, these rules do their work, since the negated Trigram
is filled in during grounding even though it does not exist as an actual atom1. However,
this does not happen if Trigram is an open predicate because its belief is inferred in PSL
as well. In this case, the second rule never applies, and since there is no counter-evidence,
any two words that occur in the same contexts at least once will have a SimilarContexts
of 1.0.

There is no fully satisfying solution to this problem. A workaround that does not involve
the mass creation of 0.0 belief atoms are negative priors, weighted rules that keep target
atoms down by default until enough positive evidence has been observed to assign them a
higher belief value. This is such a negative prior for SimilarContexts:
5.0: ~SimilarContexts(Target1, Target2)

This rule unconditionally negates SimilarContexts with a high weight, which ensures that
a single match of the positive rule from before is not sufficient to raise its belief. Only
when the combined weights of the rules providing positive evidence surpass the negative
prior will they be able to push SimilarContextss belief up.

The weight of the negative prior must be chosen carefully: If it is set too low, it will have
no effect; if it is set too high, SimilarContexts atoms will rarely have a belief above 0.0.
There is also the danger that the height of the prior’s weight may be input-dependent:
Some input data may generate lots of positive evidence, hitting the threshold easily, while
other input data could provide too sparse evidence to ever overcome the negative prior.
When putting this technique into use, one should take care that varying quality of input
data does not alter the effect of the negative priors.

2.3 Hinge-Loss Markov Random Fields
Mathematically, a PSL model with its atoms and rules is a hinge-loss Markov random field
(HL-MRF). In general, a Markov random field (MRF) is a probabilistic graphical model
that assigns probability mass using weighted feature functions, the potentials. HL-MRFs
are a subclass of MRFs whose potentials are hinge losses, i.e. functions consisting of a
constant and a linear section (Bach et al. 2017).

2.3.1 Translating Atoms and Rules into HL-MRFs
Let y = (y1, . . . , yn) be a vector of real-valued random variables from the interval [0, 1],
D̃ ⊆ [0, 1]n the set of feasible variable vectors, ϕ = (ϕ1, . . . , ϕm) a vector of potentials and
w = (w1, . . . , wm) a vector of real-valued weights. The inference objective of an HL-MRF
then is:

argmin
y∈D̃

m∑
j=0

wjϕj(y) (2.1)

1Note that this can be problematic as well, because the number of ground rules the inference is run on has
great influence on performance.

25

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

In PSL terms, y are the belief values of the n ground atoms in our atom database, ϕ the
degrees of violation of our m (weighted) ground rules and w the weights of these rules.
Informally, equation (2.1) states that the inference result is the assignment of belief values
to our atoms that least violate our rules.

The potential ϕj is calculated as

ϕj(y) = max{ℓj(y), 0} (2.2)

where ℓj is a linear function. Informally, ℓj is the distance to satisfaction of our ground rule,
i.e. how far it is from being satisfied. ℓj < 0 indicates that the ground rule is oversatisfied,
whereas ℓj > 0 means that it is violated by the belief values assigned in y.

Due to the piecewise linear nature of the hinge loss potentials, conflicting rules (i.e. dis-
tance to satisfaction functions assigning complementary values to the same y) can lead
to the aforementioned “winner take all” situation: When they have different weights, it is
cheaper to always fully satisfy the rule with higher weight because its term overrules the
term of the lower-weighted rule, which is then always completely violated. To achieve a
“smoother” result, an optimal y that attempts to partially satisfy both rules, the potentials
can be squared (cf. Bach et al. 2017, p. 11f.). However, in my experience, this will often
make more complex systems rather undecisive, because it shifts the optimal belief value
towards the middle of the belief spectrum in order to give credit to all rules, yielding many
atoms with inconclusive beliefs around the 0.5 mark. Fortunately, the potential squaring
can be switched on manually during rule specification by appending ^2 to the rule string,
as was already described in section 2.1.2.3.

The distance to satisfaction of a logical ground rule is calculated as

ℓj(y) = 1−
∑
i∈I+j

yi −
∑
i∈I−j

(1− yi) (2.3)

where I+j are the indices of those atoms that occur positively in the ground rule and I−j
are the indices of those atoms that occur negated.

The real-valued truth values of our logical ground rules are calculated using Łukasiewicz
logic, where the conjunction, disjunction and negation operators ∧, ∨ and ¬ are defined
as:

p ∧ q = max{p+ q − 1, 0}2 (2.4)
p ∨ q = min{p+ q, 1} (2.5)
¬p = 1− p (2.6)

2Beltagy, Erk, and Mooney (2014) found the Łukasiewicz conjunction to be too restrictive when applying
to multiple target atoms with belief < 1.0: For p = q = 0.5, for instance, the conjunction p∧ q is evaluated to
0.0, even though both atoms are partially believed to be true. They reformulate conjunction as the averaging
function p ∧ q = p+q

2
, a modification also adopted by Liu et al. (2016). In my model, conjunctions typically

operate on at most one or two target atoms, for which the Łukasiewicz conjunction is not too problematic.

26

2.3. Hinge-Loss Markov Random Fields 2. PROBABILISTIC SOFT LOGIC

The distance to satisfaction of a Łukasiewicz disjunction would be how far its value is
from its maximum value 1, namely 1−min{p+ q, 1} = max{1− p− q, 0}, which directly
results in the potential ϕj in (2.2) with the ℓj from (2.3) inserted.

The distance to satisfaction of an inequality rule lj(y) ≤ gj(y) can be straightforwardly
computed as:

ℓj(y) = lj(y)− gj(y) (2.7)

An equality rule tj1(y) = tj2(y) is translated into two inequality rules tj1(y) ≤ tj2(y) and
tj1(y) ≥ tj2(y).

Finally, the feasible set D̃ is defined as

D̃ = {y ∈ [0, 1]n | ∀ck ∈ c : ck(y) ≤ 0} (2.8)

where c = (c1, . . . , cr) is the vector of distance to satisfaction functions of the hard con-
straints, the rules that may not be violated.

2.3.2 Properties of HL-MRFs
The problem of solving the inference objective (2.1), i.e. finding the most probable assign-
ment of belief values y, is an instance of maximum a posteriori (MAP) inference. MAP
inference on discrete truth values is equivalent to the MAX SAT problem, which can be ap-
proximated using randomized algorithms that relax MAX SAT to a convex program (Bach
et al. 2017). While these relaxation techniques guarantee high-quality solutions, they scale
poorly to large graphical models such as MRFs. On the other hand, discrete MRFs can
be approximated by applying local consistency relaxation (LCR), which is highly scalable
but does not guarantee the quality of the result. Bach et al. (2017) do not only prove that
MAX SAT relaxation and LCR “solve equivalent optimization problems with identical
solutions” (p. 5), but also that this equivalence holds for MAP inference on both discrete
and continuous truth values when interpreted using Łukasiewicz logic. This implies that
algorithms developed for all three tasks can be combined for scalable and high-quality
reasoning about HL-MRFs.

To exploit the typically sparse dependency structure of HL-MRFs, the MAP algorithm
developed by Bach et al. (2017) uses consensus optimization, a technique that splits the
optimization problem into smaller subproblems using the alternating direction method of
multipliers (ADMM), solves them independently, and tries to find a consensus solution
from the individual subsolutions. This technique is not only very efficient but also allows
for easy parallelization. The inference can be sped up further by lazy MAP inference,
i.e. dropping some highly satisfied potentials or constraints, which can, however, have a
negative impact on the quality of the results.

Comparing their MAP inference algorithm to the commercial convex optimization toolkit
MOSEK, which uses the popular interior-point methods (IPMs), Bach et al. (2017, p. 33ff.)
found that their optimization technique scaled extremely well to larger problems. While
the IPMs’ running time quickly exploded, ADMM turned out to scale linearly with the
size of the problem, running only 70 seconds on 397,000 potentials and constraints of both

27

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

piecewise-linear and piecewise-quadratic MAP problems. IPM, on the other hand, took
37 minutes on the same size when solving a piecewise-linear MAP problem, and could
not be tested on piecewise-quadratic MAP problems larger than 225,000 potentials and
constraints, where it ran for more than 6 hours. The high performance of the ADMM
method comes at the cost of lower-quality results; however, the relative error ranges only
between 0.2% and 0.4% (Bach et al. 2017, p. 36).

HL-MRFs therefore allow for fast and accurate inference of continuous truth values con-
strained by first-order logic rules. The MAP inference algorithm developed by Bach et al.
(2017) for HL-MRFs is tailored towards the sparse dependency structure of logical rules,
scales extremely well to large problems and can be readily parallelized. This makes them
a good fit for solving computational problems that can naturally be formulated as a set
of first-order logical rules.

2.4 PSL for Historical Linguistics
PSL has already been put into use for solving various problems in computational lin-
guistics, such as semantic similarity judgment (Beltagy, Erk, and Mooney 2014; Beltagy
2016), recognizing textual entailment (Beltagy 2016; Wang and Ku 2016; Wang and Ku
2017), question answering (Beltagy 2016), event classification (Liu et al. 2016), named en-
tity recognition and entity linking (Rospocher 2018), anaphora resolution (Prakash et al.
2019), sentiment analysis (Deng and Wiebe 2015), and stance classification (Sridhar et al.
2015). All of these tasks lend themselves naturally to PSL, since they typically involve
advanced reasoning and weighting of different types of evidence. Comparative histori-
cal linguistics, despite having been overlooked so far by the PSL community, is another
natural use case for PSL. As Crowley and Bowern (2010) note:

“[T]he comparative method is not an algorithm for ‘discovering’ protolan-
guages; rather, it is a set of heuristics (guiding tools) for you to use in making
hypotheses about the past history of languages.” (p. 162)

The individual steps of the comparative method are highly interconnected, each providing
more (counter-)evidence for all of the others. There are always competing observations and
principles weighing in: The members of a sound correspondence provide evidence for one
proto-phoneme, a common sound change supports another, and both violate the symmetric
inventory principle; the occurrences of a regular sound correspondence support a certain
conditioned sound law, whose context, however, overlaps with a different sound law for
the same proto-phoneme, and either would make a cognate set implausible that provides
evidence for another sound correspondence... These kinds of dependencies are difficult to
model computationally, but seem predestined for being formulated inside PSL.

While other probabilistic models, especially when machine learning is involved, often
present themselves as a “black box” whose reasoning is hard to retrace, PSL models can
explain themselves in an understandable way, since the rules they operate on are modeled
after the same principles human linguists use for reasoning. This should not only make a
PSL model easier to debug, but can also lead to interesting insights as to how much the
different parts of the comparative method each influence the outcome.

28

3 Preparation of Gold Standard
Sound Law Sets

In order to evaluate a system for automated sound law inference, one needs a complete
set of gold standard sound laws to compare the system’s output against. Unfortunately,
no such gold standard exists yet to my knowledge. Bouchard-Côté et al. (2013), despite
also inferring individual sound laws, only evaluate their output against full proto-word
reconstructions. List (2019a) does not directly evaluate the detected sound correspondence
patterns, but rather uses them to predict unseen cognates and compares these against the
data. Hruschka et al. (2015) have a gold standard set of sound laws for Turkic, but do not
give contexts for these because their system can only detect unconditioned sound change.
Since SoInEn, the system presented in this thesis, is designed to infer conditioned sound
laws as well, I cannot use their gold standard.

I therefore compiled my own two gold standard sound law sets for some of the Dravidian
and Samoyedic languages, which I present in this chapter. Dravidian was chosen due
to my familiarity with some of its members (Malayāḷaṁ and, to some extent, Kannaḍa)
and is a rather simple test case, with the selected daughter languages still being rather
close to each other. The Samoyedic languages underwent more drastic sound changes and
serve as a difficult test case to see how the system performs on a rather obscure test set.
Initially, I intended to compile gold standards for several more language families, but this
turned out to me a more tedious task than expected, since the information about sound
change is often spread across many sources for each descendant language, and there is
usually not one comprehensive survey of all the sound changes that happened between a
proto-language and its children. In this respect, Dravidian and Samoyedic also had the
advantage of having several comparative sources compiling the phonetic history of the
entire family that I could rely on.

3.1 Dravidian
The members of the Dravidian language family are spoken in India, primarily in the south-
ern states, and some bordering countries. They can be roughly divided into four groups:
1) North Dravidian, comprising Brahui, which is spoken in Pakistan, as well as Kuṛukh

29

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

Dravidian

South Dravidian

South Dravidian I

Tamiḻ Malayāḷaṁ

Kannaḍa

South Dravidian II

Telugu

Central Dravidian

…

North Dravidian

…

Figure 3.1: The South Dravidian languages within the Dravidian language family tree.

FRONT CENTRAL BACK
HiGH i i ī iː u u ū uː
MiD e e ē eː o o ō oː
LOW a a ā aː

Table 3.1: The reconstructed vowel inventory of Proto-Dravidian (the usual romanization in italics to
the left, IPA to the right).

and Malto, which are spoken in Nepal and the north-eastern part of India, 2) Central
Dravidian, which contains a number of languages spoken in small areas in central India,
and 3) South Dravidian, which is the largest group and comprises most of the Dravid-
ian languages spoken in southern India, among them the four literary languages Tamiḻ,
Malayāḷaṁ, Kannaḍa and Telugu (Krishnamurti 2003). South Dravidian can further be
divided into South Dravidian I and II, with Tamiḻ, Malayāḷaṁ and Kannaḍa belonging
to the South Dravidian I and Telugu to the South Dravidian II group (Krishnamurti
2003). Figure 3.1 illustrates the position of the four languages in the Dravidian language
family.

Of the Dravidian languages, the NorthEuraLex database only contains Tamiḻ, Malayāḷaṁ,
Kannaḍa and Telugu, which is why I focus on these four languages in the following sections.
In particular, I only describe the sound laws that applied to these languages, so I am not
covering the evolution of North and Central Dravidian. All four are official languages in
their respective home states with long literary traditions and are used in modern everyday
speech and writing by tens of millions of native speakers. As such, they are still actively
evolving and particularly well-documented.

3.1.1 Proto Vowels
There is broad agreement that Proto-Dravidian had ten vowels, namely the members of
the standard five-vowel system (/a/, /e/, /i/, /o/ and /u/) as both short and long vowels
(Andronov 2003; Burrow and Emeneau 1984; Krishnamurti 2003). Table 3.1 shows the
resulting vowel space for Proto-Dravidian. The five vowel qualities have been preserved in
all modern Dravidian languages and the length contrast was retained in all except Brahui,

30

3.1. Dravidian 3. PREPARATION OF GOLD STANDARD

LABiAL DENTAL ALVEOLAR RETROFLEX PALATAL VELAR
STOP/AFFRiC. p p t t ̪ ṯ t ṭ ʈ c t͡ɕ k k

NASAL m m n n̪ ṇ ɳ ñ ɲ
LATERAL l l ḷ ɭ

FLAP r ɾ
APPROXiMANT v ʋ ẓ/ḻ ɻ y j

Table 3.2: The reconstructed consonant inventory of Proto-Dravidian (the usual romanization in italics
to the left, IPA to the right).

where it was lost only for /e/ and /o/ (Krishnamurti 2003).

In the orthography of modern Dravidian languages, the sequences /ai/ and /au/ are usu-
ally treated as diphthongs. From a phonological point of view, however, they are better
analyzed as vowel-glide sequences /aj/ and /aw/, respectively: Phonotactically, they pat-
tern with other vowel-consonant rhymes where the coda is a sonorant (Krishnamurti 2003,
pp. 118f.). Hence, Proto-Dravidian is believed to not have had any diphthongs (Andronov
2003; Burrow and Emeneau 1984; Krishnamurti 2003).

3.1.2 Proto Consonants
The situation is slightly less clear when it comes to the consonant inventory of Proto-
Dravidian. Table 3.2 shows the inventory that I will assume in this thesis.

It is generally agreed that there Proto-Dravidian had no voicing contrast in plosives and
affricates (Andronov 2003; Burrow and Emeneau 1984; Krishnamurti 2003) and Krish-
namurti (2003, pp. 132ff.) shows in a quantitative study that even in modern Dravid-
ian languages the voiceless stops are dominating. Instead, Proto-Dravidian contrasted
geminate and non-geminate stops, which has developed into a voicing contrast in many
modern Dravidian languages (Andronov 2003; Burrow and Emeneau 1984; Krishnamurti
2003).

Proto-Dravidian is noted for having a three-way contrast in apical stops, distinguishing
dental /t/̪, alveolar /t/ and retroflex /ʈ/. The alveolar stop has developed into an alveolar
trill /r/ in most modern Dravidian languages and is thus also often written as ṟ.

The phonemic status of the alveolar nasal /n/ in contrast to the dental nasal /n̪/, on the
other hand, is debated. Burrow and Emeneau (1984) list them as allophones, but note
that “Ta. [Tamiḻ] and Ma. [Malayāḷaṁ] seem to have evidence for two phonemes […] in
PDr. [Proto-Dravidian]” (p. xiii). According to Andronov (2003, p. 83) and Krishnamurti
(2003, p. 138), the two nasals contrasted in several words of Classical Tamiḻ in intervocalic
or word-final position. In general, however, the dental nasal occurred word-initially and
before dental consonants, while the alveolar nasal dominated in all other positions. Since
the alveolar nasal has completely merged into the dental nasal in many modern Dravidian
languages, historical linguists usually only reconstruct /n̪/ as a phoneme and treat /n/ as a
positional allophone, which is why I have not included it in the Proto-Dravidian inventory
for this thesis.

31

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

Another peculiar case is the palatal nasal /ɲ/, which is extremely common in modern
Dravidian languages, but often only occurs as an allophone of /n̪,n/ next to a palatal
consonant (Andronov 2003, p. 32). It has phonemic status in some languages though,
notably Malayāḷaṁ and Tamiḻ, where it also occurs word-initially (Krishnamurti 2003,
pp. 139ff.). Due to its frequent co-occurrence with other palatals, Burrow and Emeneau
(1984) does not list /ɲ/ as a Proto-Dravidian consonant and Andronov (2003, p. 83)
reconstructs Tamiḻ and Malayāḷaṁ /ɲ/ as having developed from Proto-Dravidian /n̪,n/.
He notes, however, that there exists an alternation of word-initial /na/, /ne/ in several
words of some Dravidian languages that could be reconstructed as stemming from Proto-
Dravidian /na/, /ɲa/, indicating that /ɲ/ was in fact in the Proto inventory. Krishnamurti
(2003, pp. 139ff.) also presents /ɲ/ as a Proto-Dravidian phoneme occurring only word-
initally, mostly before /a/ and /e/, that developed into /n̪,n/ in most daughter languages.
I adopt this view and regard /ɲ/ as a proto-consonant.

There are different opinions on the phonetic features of Proto-Dravidian /v/. Most authors
use the symbol v for it. Andronov (2003, pp. 32f.) notes that both bilabial [w] and labio-
dental [v] occur among the Dravidian languages, but that “[t]he labio-dental phoneme is
predominant”. Krishnamurti (2003, p. 141f.), however, believes that the Proto-Dravidian
phoneme was actually bilabial [w], because no rounded vowels (i.e. /u/, /o/) occur after
it, and claims that “[s]everal authors write <v> instead but they do not mean that the
sound that they are representing is labio-dental” (p. 142). In this thesis, I assume /v/ to
have been [ʋ], because that is the IPA symbol used in the NorthEuraLex transcriptions of
the Dravidian languages. Phonetically, it is also in between [v] and [w], the suggestions of
Andronov (2003) and Krishnamurti (2003).

Most sources do not reconstruct any fricatives for Proto-Dravidian (apart from the debat-
able [v]). Andronov (2003) lists /s/ as a proto-phoneme, but it appears only intervocally
in place of /t͡ɕ/. Since /s/ is a common reflex of */t͡ɕ/ in Kannaḍa and Telugu (Krishna-
murti 2003; Burrow and Emeneau 1984) and an allophone of /t͡ɕ/ in modern Tamiḻ (Keane
2004) between vowels, I do not consider it a separate phoneme of Proto-Dravidian.

Krishnamurti (2003) proposes an additional phoneme H which he characterizes as a glot-
tal or laryngeal non-sonorant glide that did not occur word-initially (pp. 91, 93). This
suggestion is based on a phoneme ḥ called āytam that appeared in a few words in Early
Tamiḻ and assimilated to the following stop (resulting in a geminate). According to Kr-
ishnamurti (2003, pp. 154ff.), H explains several words that alternate between long and
short vowels in different inflectional forms, as well as the unexpected appearance of /h/
and /j/ in some words of several Dravidian languages. Since the evidence for H is so small
and Krishnamurti is the only author proposing it, I have decided to not include H in the
Proto-Dravidian inventory for this thesis.

3.1.3 Phonotactics
In general, Proto-Dravidian had a simple (C)V(S) syllable structure (S = sonorant). Just
the initial syllable could display the full range of vowels, whereas in later syllables, only the
vowels [a], [i] and [u] are found (Krishnamurti 2003, pp. 90ff.). The consonants [t], [ɾ] and
all retroflex sounds did not appear word-initially (Krishnamurti 2003, p. 120). Intervocalic

32

3.1. Dravidian 3. PREPARATION OF GOLD STANDARD

[p] had already been spirantized into [ʋ] in Proto-Dravidian and is therefore also not found
(Krishnamurti 2003, p. 144).

All of the stops and the affricate could be geminate in Proto-Dravidian (Andronov 2003;
Burrow and Emeneau 1984; Krishnamurti 2003). There are a few contrasting pairs for
short and long /l/ and /ɭ/, indicating that they might have had geminate counterparts
in the proto-language, but there is no evidence for such a distinction for the remaining
sonorants (Krishnamurti 2003, p. 166). The only consonant clusters of Proto-Dravidian
were word-medial homorganic nasal+stop clusters, which were possible with both non-
geminate and geminate stops (Andronov 2003; Burrow and Emeneau 1984; Krishnamurti
2003).

The exact phonetic quality of the single and geminate stops is not entirely clear. Since
most of the modern Dravidian languages show some degree of lenition or voicing of single
plosives in intervocalic position and after the homorganic nasal, it has been proposed that
this was already in effect in Proto-Dravidian (Krishnamurti 2003, p. 144; Andronov 2003,
pp. 23f.). This is especially true for the South Dravidian languages, which all voice single
stops intervocally and in nasal+stop clusters, so I will reconstruct these stops as voiced in
the following sound laws.

3.1.4 Sound Changes
In this section I present the sound changes that occurred between Proto-Dravidian and
Tamiḻ, Malayāḷaṁ, Kannaḍa and Telugu. (∼) indicates an irregular sound change and (⋆)

points to a comment below the respective table. The first row of each table refers to the
sources, with the respective page numbers in subscript. The two sources I am using are the
comparative grammars by Andronov (2003), abbreviated AN, and Krishnamurti (2003),
abbreviated KR.

3.1.4.1 Vowels
The Dravidian vowels are astonishingly stable in the South Dravidian languages. The
only changes they went through are what is referred to by Krishnamurti (2003) as the
“South Dravidian umlaut” (p. 101) and the “Kannaḍa umlaut” (p. 106). Here, in a first
step, the high vowels [i(ː)] and [u(ː)] were lowered to [e(ː)] and [o(ː)], respectively, in all
four languages when the nucleus of the following syllable was [a]. Then, however, [e(ː)]
and [o(ː)] were raised again in the same environment in Tamiḻ and Malayāḷaṁ. Finally,
Kannaḍa also raised [e(ː)] and [o(ː)] when followed by high vowels.

Tamiḻ Malayāḷaṁ Kannaḍa Telugu
*V AN51,67ff,KR101ff

i(ː) e(ː) | _ C* a e(ː) | _ C* a
u(ː) o(ː) | _ C* a o(ː) | _ C* a
e(ː) i(ː) | _ C* a i(ː) | _ C* a i(ː) | _ C* [HiGH]
o(ː) u(ː) | _ C* a u(ː) | _ C* a u(ː) | _ C* [HiGH]

33

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

3.1.4.2 Obstruents
If one assumes the voicing opposition of word-internal non-geminate and geminate stops
to have existed already in Proto-Dravidian, the obstruents are also very stable, with the
exception of alveolar [t], which only survives in some contexts in Tamiḻ and Malayāḷaṁ,
and the affricate [t͡ɕ] which underwent a number of irregular changes, not all of which I
will discuss due to their limited occurrence.

Tamiḻ Malayāḷaṁ Kannaḍa Telugu
*p AN54f,81f,KR120f,163ff

p- p p h p
mb ʋ | Vː _ m | Vː _

mb mb mb mː
pː p | Vː _ p | Vː _

pː pː pː pː
mpː pː pː mp mp

*t̪ AN47f,79ff,KR145f,163ff

t-̪ t ̪ t ̪ t ̪ t ̪
-d̪- ð d̪ d̪ d̪
n̪d̪ n̪d̪ n̪ː n̪d̪ n̪d̪
t ̪ː t ̪ | Vː _ t ̪ | Vː _

t ̪ː t ̪ː t ̪ː t ̪ː
n̪t ̪ː t ̪ː t ̪ː n̪t ̪ n̪t ̪

*t AN47f,77ff,KR146,163ff

-d- r r r r
nd ɳː n̪ː n̪d̪ ɳɖ
tː r | Vː _ (⋆) ʈ | Vː _ (⋆)

tː tː t ̪ː ʈː
ntː tː tː n̪t ̪ ɳʈ

(⋆) In Kannaḍa and Telugu, geminate stops were shortened to single stops after a long vowel
(Krishnamurti 2003, pp. 163f.). For the geminate alveolar stop /tː/, it can be observed
that Kannaḍa shows short /r/ and Telugu short /ʈ/ where Tamiḻ and Malayāḷaṁ have
geminate /tː/ after long vowels:

(1) a. Tamiḻ cāṟṟu, Malayāḷaṁ cāṟṟuka, Kannaḍa sāṟu, Telugu cāṭu ‘to publish, an-
nounce’ (Burrow and Emeneau 1984)

b. Tamiḻ ēṟṟu, Malayāḷaṁ ēṟṟuka, Kannaḍa ēṟisu ‘to raise’, Telugu ēṭavālu ‘slope’
(Burrow and Emeneau 1984)

c. Tamiḻ ūṟṟam, Kannaḍa ūṟu-gōlu ‘walking-stick’, Malayāḷaṁ ūṟṟam, Telugu ūṭa
‘strength’ (Burrow and Emeneau 1984)

34

3.1. Dravidian 3. PREPARATION OF GOLD STANDARD

It seems that the Telugu law tː > ʈː applied before this sound change, but the Kannaḍa law
tː > t̪ː applied afterwards, because otherwise, we would observe short /t/̪ in the Kannaḍa
words above.

Tamiḻ Malayāḷaṁ Kannaḍa Telugu
*t͡ɕ AN47f,74ff,88,KR121ff,148f,163ff

t͡ɕ- ∅ (∼)(⋆) ∅ (∼)(⋆) ∅ (∼)(⋆) ∅ (∼)(⋆)

t͡ɕ t͡ɕ s t͡ɕ
-d͡ʑ- s d͡ʑ s s
ɲd͡ʑ ɲd͡ʑ ɲː ɲd͡ʑ ɲd͡ʑ
t͡ɕː t͡ɕ | Vː _ t͡ɕ | Vː _

t͡ɕː t͡ɕː t͡ɕː t͡ɕː
ɲt͡ɕː t͡ɕː t͡ɕː ɲt͡ɕ ɲt͡ɕ

(⋆) Word-initial /t͡ɕ/ has undergone a number of irregular sound changes in many of
the Dravidian languages, notably all South Dravidian languages. Krishnamurti (2003,
p. 121ff.) assumes a gradual weakening /t͡ɕ/ → /s/ → /h/ → ∅ that reached different
stages in the different languages. It is irregular in that some words with initial /t͡ɕ/ retain
it and some weaken or lose it. Krishnamurti (2003, p. 122) claims that only 14 % of words
with Proto-Dravidian initial /t͡ɕ/ went through the gradual loss. In Burrow and Emeneau
(1984), the forms with and without /t͡ɕ/ often co-occur and even within our NorthEuraLex
0.9 (NEL) database, /t͡ɕ/ shows different degrees of loss:

(2) a. ‘salt’: Tamiḻ uppu (NEL [upːu]), Malayāḷaṁ uppu (NEL [upːɨ̆]), Kannaḍa uppu
(NEL [wʊpːu]), Telugu uppu (NEL [upːu]); but e.g. Kolami sup, Parji cup (Bur-
row and Emeneau 1984)

b. ‘wing’: Tamiḻ ciṟai, iṟai, iṟakkai, etc. (NEL [irʌkːʌi]), Malayāḷaṁ iṟaku, ciṟaku
(NEL [t͡ʃiraɡɨ̆]), Kannaḍa eṟake, ṟekke, etc. (NEL [rɛkːe]), Telugu eṟaka, ṟekka,
etc. (NEL [ɽekːʌ]) (Burrow and Emeneau 1984)

c. ‘to revolve, turn around’: Tamiḻ cuṟṟu (NEL [t͡ɕutːu] ‘wrap’), Malayāḷaṁ cuṟṟuka
(NEL [t͡ʃutːuɡa]), Kannaḍa suttu (NEL [sʊt ̪ː u]), Telugu cuṭṭu (NEL [t͡ɕuʈːu] ‘wrap’)
(Burrow and Emeneau 1984)

According to Andronov (2003, p. 74), initial /t͡ɕ/ became /s/ in Tamiḻ and sometimes in
Kannaḍa, but not in Malayāḷaṁ and Telugu, and was lost in some words of all four lan-
guages. However, as I already mentioned in the previous section when discussing /s/ as a
proto-sound, Andronov generally uses the symbol s in Tamiḻ words where you would nor-
mally expect c. According to Schiffman (1999, pp. 9f.) and Keane (2004, pp. 112ff.), /t͡ɕ/ is
pronounced [s] intervocally in Tamiḻ, and its word-initial pronunciation is largely speaker-
dependent. Since word-initial Tamiḻ c is consistently transcribed as [t͡ɕ] in NorthEuraLex,
I will assume the sound change t͡ɕ > s / # _ for Kannaḍa only.

35

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

Tamiḻ Malayāḷaṁ Kannaḍa Telugu
*ʈ AN76f,KR148,163ff

-ɖ- ɖ ɖ ɖ ɖ
ɳɖ ɳɖ ɳɖ ɳɖ ɳɖ
ʈː ʈ | Vː _ ʈ | Vː _

ʈː ʈː ʈː ʈː
ɳʈː ʈː ʈː ɳʈ ɳʈ

*k AN47f,71ff,KR128f,149f,163ff

k- t͡ɕ | _ [FRONT] t͡ɕ | _ [FRONT] t͡ɕ | _ [FRONT]
ɡ | _ V [SON.] (∼) ɡ | _ V [SON.] (∼)

k k k k
-ɡ- ɣ ɡ ɡ ɡ
ŋɡ ŋɡ ŋː ŋɡ ŋɡ
kː k | Vː _ k | Vː _

kː kː kː kː
ŋkː kː kː ŋk ŋk

3.1.4.3 Sonorants
The sonorants are completely unchanged in Tamiḻ and Malayāḷaṁ. Kannaḍa has changed
word-initial [ʋ] and entirely lost [ɻ], while Telugu systematically replaced all retroflex
sonorants.

Tamiḻ Malayāḷaṁ Kannaḍa Telugu
*N AN82ff,KR137ff,150f

m m m m m
n̪ n̪ n̪ n̪ n̪
ɲ ɲ ɲ n̪ n̪
ɳ ɳ ɳ ɳ n̪
ŋ ŋ ŋ ŋ ŋ

*ʋ AN55f,85f,KR141f,154

b | # _
ʋ ʋ ʋ ʋ

*l AN85,KR153

l l l l

*ɭ AN87f,KR153f

ɭ ɭ ɭ l

36

3.1. Dravidian 3. PREPARATION OF GOLD STANDARD

*ɾ AN84f,KR151f

ɾ ɾ r r

Tamiḻ Malayāḷaṁ Kannaḍa Telugu
*ɻ AN86f,KR152f

r | _ C r | C _
ɻ ɻ ɭ ɖ

*j AN84,KR154

j j j j

3.1.5 Challenges
Tamiḻ, Malayāḷaṁ, Kannaḍa and Telugu are still noticeably similar and most of the sound
changes are quite transparent. The original vowel system, usually the part of the phoneme
inventory that is especially prone to sound changes, has been well conserved in all four
languages. Having the extremely conservative Tamiḻ, “which in the Dravidian family
retained […] the greatest archaism and the hihgest [sic!] degree of propinquity to its
Proto-Dravidian ancestor” (Andronov 2003, p. 24), and its sister language Malayāḷaṁ in
the sample is another facilitation, since they have conserved unsteady phonemes such as
alveolar /t/ and the retroflex approximant /ɻ/ that were lost in most of the other Dravidian
languages (Krishnamurti 2003, p. 48). While the sample is restricted to South Dravidian
languages, all proto-phonemes have been preserved in at least one of these languages, so
it should be possible to satisfyingly reconstruct Proto-Dravidian from them.

A significant challenge, however, is posed by the Dravidian languages’ close contact to
their Indo-Aryan neighbors, in particular Sanskrit. While Tamiḻ is still rather resistant
to loanwords, extensive borrowing has been going on in its relatives (Krishnamurti 2003).
The percentage of Sanskrit material in the lexicons of Malayāḷaṁ, Kannaḍa and Telugu is
believed to be well over 50 % (Staal 1963). Malayāḷaṁ is particularly inclined to borrow-
ing, having a long literary tradition of blending Sanskrit and Dravidian material (Menon
1978). With the Sanskrit loanwords, Malayāḷaṁ has imported both voiced and voiceless
aspirated stops as well as the fricatives /ɕ/, /ʂ/ and /h/ into its phonetic inventory (Asher
and Kumari 1997). While not every speaker distinguishes all of these sounds, some do,
so they must all be transcribed accordingly. A human linguist familiar with Sanskrit
can easily identify and ignore these loanwords for reconstruction of Proto-Dravidian, but
the overwhelming evidence for these Indo-Aryan sounds can pose quite a challenge for
automated methods when the data comes without proper loanword annotation.

Even more challenging is the automated detection of genetic relationships. The huge
amount of Sanskrit and nowadays also English lexical material could easily lead a system
to place the Dravidian with the Indo-Aryan languages instead of assuming an independent
language family. It might also distance the conservative Tamiḻ from its close relatives due
to the seemingly small amount of shared lexical items and the differences in the phoneme
inventories.

37

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

Samoyedic

Northern Samoyedic

Nganasan

Enets Nenets

Southern Samoyedic

Selkup Sayan Samoyedic

Kamas Mator

Figure 3.2: The traditional Samoyedic language group tree.

These problems hold especially for the NorthEuraLex database, which was designed to
represent the lexicons of the modern languages and contain the words that are actually
used nowadays, not so much to show off cognacy and genetic relationships in the languages’
lexical inventories. As such, it naturally contains many loanwords for the Dravidian lan-
guages, but does not yet have loanword annotation. Since the concepts covered by the
database have been selected with their stability in mind and are not so prone to borrowing,
the share of loanwords among the NorthEuraLex entries for the Dravidian languages is
probably much lower than in the overall lexicon of the modern Dravidian speaker. Still,
any system for proto-reconstruction using the NorthEuraLex data must be able to discard
the signals sent by the loanwords in some way.

3.2 Samoyedic
The Samoyedic languages form one of the major branches of the Uralic language fam-
ily (Janhunen 1998; Sammallahti 1988; Hammarström, Forkel, and Haspelmath 2019).
They are spoken in Northwest Siberia, mostly in the region between the Ob’ and Yeni-
sei rivers (Janhunen 1998; Hammarström, Forkel, and Haspelmath 2019). There are six
known Samoyedic languages: Nganasan, Enets and Nenets, traditionally grouped together
as Northern Samoyedic, and Selkup, Kamas and Mator, traditionally grouped together
as Southern Samoyedic (Janhunen 1998; Hajdú 1988). This division, however, is not
uncontroversial. An alternative taxonomy has Nganasan and Mator split off early and
groups Enets together with Nenets and Selkup together with Kamas (Janhunen 1998;
Hammarström, Forkel, and Haspelmath 2019). Figure 3.2 shows the language tree that
results from the traditional grouping.

With the exception of Nenets, the Samoyedic languages are poorly documented and en-
dangered by extinction or, in the case of Kamas and Mator, have already become extinct
(Janhunen 1998). Nenets is still surviving with over 20,000 speakers (Janhunen 1998;
Lewis, Simons, and Fennig 2015). The NorthEuraLex database only contains dialects of
the four living Samoyedic languages, namely Nganasan, Enets (Forest dialect), Nenets
(Tundra dialect) and Selkup (Northern dialect). The following sections will therefore only
be concerned with the phonetic evolution of these four languages.

The Uralicist literature in general does not use the IPA for phonetic transcription but the

38

3.2. Samoyedic 3. PREPARATION OF GOLD STANDARD

FRONT CENTRAL BACK
HiGH i i ü y i ̮ɯ u u
MiD e e ö ø ə̑ ə e̮ ɤ o o
LOW ä æ å ɒ

Table 3.3: The reconstructed vowel inventory of Proto-Samoyedic (UPA in italics to the left, IPA to
the right).

Uralic Phonetic Alphabet (UPA), a transcription scheme first suggested by Setälä (1901)
which is particularly suited for the phonetic systems of the Uralic languages. Since the
NorthEuraLex database uses IPA transcription, I needed to find suitable IPA equivalents
for the UPA symbols discussed in the Uralicist sources. The following two sections will
therefore not only discuss the Proto-Samoyedic sound inventories, but also justify my
choices for the IPA transcription.

3.2.1 Proto Vowels
Up until the end of the 20th century, there was general agreement that the Proto-
Samoyedic sound inventory contained eleven vowels, as arranged in Table 3.3 (Sammallahti
1988; Janhunen 1998; Mikola 2004). However, especially the slightly unclear evolution of
the ‘reduced’ Proto-Samoyedic vowel ə̑ has led to proposals of additional proto-vowels. In
1993, Eugen Helimski proposed a second ‘reduced’ vowel on the basis of Nganasan data.
In 2005, he published the paper “The 13th Proto-Samoyedic vowel” where he not only
extended the inventory by yet another vowel, but also reinterpreted the phonetic values
of the previously accepted proto-vowels. Recently, there have even been suggestions for a
14th and 15th Proto-Samoyedic vowel (Normanskaja 2018). Janhunen’s (1977) etymologi-
cal dictionary and all of the comprehensive works about Samoyedic sound change, however,
are from before these additions and are thus still based on the old vowel system. Mikola
(2004) already acknowledges Helimski’s 12th vowel, but does not incorporate it in any
sound changes discussed. Therefore, I have no choice but to still assume the traditional
Proto-Samoyedic inventory of eleven vowels as displayed in Table 3.3.

The phonetic value of the UPA symbols e, i, o, u, å, ä, ö and ü is rather clear from Setälä’s
(1901) description:

• ä is described as “a ‘broad ä’, as in Swedish before r” (orig. “ein ‘breites ä’, wie im
schwedischen vor r”; p. 36), which corresponds to IPA [æ].

• å is described as a “labialized a” (orig. “labialisiertes a”; p. 38), which corresponds
to IPA [ɒ].

• ü is described as “ü as in German” (orig. “ü wie im deutschen”; p. 38), which corre-
sponds to IPA [y].

• Setälä notes “that with e i o ö u ü […], one denotes rather open (‘wide’) variants of the
respective sounds”1 (p. 36), which suggests that the corresponding IPA transcriptions

1my translation, orig. “dass man mit e i o ö u ü, wenn nicht das gegenteil hervorgehoben ist, ziemlich
offene (‘wide’) varianten der betreffenden laute bezeichnet”

39

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

would be those of the tense vowels [e], [i], [o], [ø], [u] and [y].

The diacritic ̮ (breve below) “denotes the retraction of the tongue next to the retraction
of the lips, e.g. a, e̮ (= est. õ), i ̮ (= a sound that is close to russ. ы, although without
being diphthongish)”2 (Setälä 1901, p. 40). In a vowel chart on p. 41, e̮ and i ̮ are marked
as vowels with little opening of the mouth (like o and u), retracted lips (as opposed to
protruded lips with rounding) and retracted tongue (as opposed to e and i with protruded
tongue). They are thus the back counterparts of the high unrounded front vowels [e] and
[i] and can therefore be transcribed in IPA as [ɤ] and [ɯ], respectively. This also matches
Estonian õ [ɤ] and is close to Russian ы [ɨ].

Translating ə̑ into IPA is a bit of a challenge, also since the symbol used for this sound
is not consistent among Uralicists. Janhunen (1977), Janurik (1982) and Mikola (2004)
use ə̑, while Mikola (1988) uses ŏ, Sammallahti (1988) uses ɵ and Janhunen (1998) uses
ø. I stick with the majority here and display it as ə̑. This is also the only one of the four
symbols that is mentioned by Setälä (1901).

Setälä (1901) states that “[b]y inversion of the vowel signs, one creates signs for ‘indifferent’
or otherwise incomplete vowels”3 (p. 39). This indicates that ə̑ is a lax version of e̮ ([ɤ]),
for which there is no symbol in IPA. Janhunen (1977), Sammallahti (1988), Mikola (1988)
and Janhunen (1998) display the sound in the horizontal center of their vowel charts,
indicating that it is in between front and back vowels, while Mikola (2004) places it in
the same column as the rounded front vowels ü [y] and ö [ø]. Neither of them gives
a vertical placement of ə̑, instead they list it as the ‘reduced’ vowel below the regular
vowels. Janhunen (1998) describes it as “being quantitatively shorter and prosodically
weaker” (p. 463). No more concrete specification of its phonetic quality is given. Since it
appears to be generally lax or “weak” vowel of underspecified place of articulation, I have
chosen to transcribe it as the schwa [ə].

It is assumed that Proto-Samoyedic had eight falling diphthongs, [iə]̯, [yə]̯, [eə]̯, [øə]̯, [uə]̯,
[ɤə]̯, [oə]̯ and [ɒə]̯, with the second element [ə]̯ deriving from an mostly undefined (but
probably velar) sound ‘x’ reconstructed for Proto-Uralic (Mikola 2004, p. 22f; Sammallahti
1988, p. 482, 485).

3.2.2 Proto Consonants
There is wide agreement among Uralicists that the Proto-Samoyedic phoneme inventory
consisted of 13 consonants, namely the ones displayed in Table 3.4 (Sammallahti 1988;
Mikola 2004; Janhunen 1998). Sammallahti (1988) mentions a “possible secondary *ś”,
but puts it in brackets in his consonant table. Mikola (2004, p. 29ff) also considers *ś,
but notes that it can only be derived from Proto-Uralic *ć, which is not reconstructed by
many scholars. Janhunen (1998) does not discuss *ś at all. I have therefore decided not
to include this phoneme in my gold standard.

2my translation, orig. “bezeichnet die zurückziehung der zunge nebst zurückziehung der lippen, z. b. a, e̮
(= est. õ), i ̮ (= ein laut, zu dem russ. ы nahe steht ohne jedoch diphthongisch der [sic!] sein)”

3my translation, orig. “Durch umkehrung der vokalzeichen stellt man zeichen für ‘indifferente’ oder in einer
oder anderer hinsicht unvollkommene vokale her”

40

3.2. Samoyedic 3. PREPARATION OF GOLD STANDARD

LABiAL ALVEOLAR RETROFLEX PALATAL VELAR
STOP p p t t k k

AFFRiCATE c ʈ͡ʂ
NASAL m m n n ń ɲ ŋ ŋ

FRiCATiVE s s
LATERAL l l

TRiLL r r
APPROXiMANT w w j j

Table 3.4: The reconstructed consonant inventory of Proto-Samoyedic (UPA in italics to the left, IPA
to the right).

The UPA transcriptions of the Proto-Samoyedic consonants are for the most part the same
as their IPA equivalents. The acute accent on consonants marks palatalization (Setälä
1901, p. 40), hence ń stands for either [nʲ] or [ɲ]. For the sake of simplicity, I choose to
transcribe it as the latter.

The phonetic quality of c is more difficult to determine. In all of the consonant charts
for Proto-Samoyedic (Janhunen 1977; Sammallahti 1988; Mikola 2004), c is in the same
column as t, n, s, l and r, but receives its own row, suggesting that it is alveolar or at least
coronal but that its manner of articulation differs from the other alveolar/coronal sounds
(in particular the plosive). Considering the usual conventions for the phonetic values of
the letter c, it is highly probable that it denotes an alveolar affricate, for instance [t͡s]
or [t͡ʃ]. However, Setälä (1901) does not list it; in fact, he explicitly rejects the idea of
having single symbols for sequences of multiple sounds, like affricates (p. 34). According
to Sammallahti (1988), in Proto-Uralic, “/c/ was retroflex (cacuminal)” (p. 482). This is in
accordance with Janhunen (1998), who describes Proto-Samoyedic c as “retroflex and/or
affricated” (p. 462). I therefore transcribe it as [ʈ͡ʂ].

3.2.3 Phonotactics
The majority of Proto-Samoyedic reconstructions in the etymological dictionary of Jan-
hunen (1977) are mono- or bisyllabic words, but some non-derived forms have up to three
syllables (Janurik 1982, p. 42f). Only single consonants are allowed word-initially and
word-finally, but clusters of two consonants can occur between vowels. Most of these are
combinations of nasal and obstruent, but sequences of two plosives or plosive and fricative
may also occur. There are five instances of three-consonant clusters in Janhunen (1977),
but all of these begin with the glide /j/ (Janurik 1982, p. 42ff).

The full vowel inventory can only be observed in first syllables. Non-initial syllables show
a reduced set of vowels, whose exact composition is still a matter of dispute (Mikola 2004,
p. 23ff). The popular opinion also presented by Sammallahti (1988) and Janhunen (1998)
is that it consisted of the three vowels [ɒ], [æ] and [ə]. All consonants could generally
appear in all possible positions, with the exception of [r] and [ŋ], which never appear

41

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

word-initially (Sammallahti 1988, p. 482), and [ɲ], which is never found in the coda4
(Mikola 2004, p. 50).

3.2.4 Sound Changes
In this section, I present the sound changes from Proto-Samoyedic into Nganasan, (Forest)
Enets, (Tundra) Nenets and (Northern) Selkup. (∼) indicates an irregular sound change.
The first row of each table refers to the sources for the individual languages, with the
respective page numbers in subscript.

The main source is the posthumously published and edited academic dissertation of Tibor
Mikola (2004), abbreviated MI, an extensive overview over the phonological and morpho-
logical history of the Samoyedic languages. Janurik (1982) (JK) provides a complete list
of all sound correspondences that can be extracted from the etymological dictionary of
Janhunen (1977) with their frequencies. Unfortunately, he only published the consonant
correspondences. As an additional source for the vowels (and for some consonants), I
use Sammallahti (1988) (SA), who gives tabular overviews over both vowel and consonant
correspondences. However, he gives no information on conditioned sound changes for vow-
els and only little for consonants, and lists only word-initial consonant changes. Finally,
Janhunen (1998) (JN) discusses a few Samoyedic sound changes, but does not provide an
exhaustive list.

3.2.4.1 Vowels
The Proto-Samoyedic vowel inventory has been reduced greatly in Nganasan, Enets and
Nenets, where the front-back contrasts [i∼ɯ], [y∼u], [e∼ɤ], [ø∼o] and [æ∼ɒ] have been
eliminated. In Nenets, the lost front-back opposition is reflected in the palatalization of
consonants preceding formerly front vowels. Selkup is the most conservative of the four
languages, having retained most of the Proto-Samoyedic vowels (most notably [y] and [ɤ]).
Nganasan is the only Samoyedic language that still has the reduced vowel [ə] (Mikola 2004,
p. 72f).

Nganasan Enets Nenets Selkup
*æ SA495,JN467,MI73 SA495,MI63 SA495,MI39 SA495,MI83

ɑ e ɑ: ɑ

*ɒ SA495,JN467,MI78 SA495,MI64 SA495,MI39 SA495,MI83
o | # (C) _
u ɑ ɑ ɑ

4Mikola (2004) notes, however: “With respect to the consonant -ń, a PS [Proto-Samoyedic] etymology with
the sound -ń can perhaps just not be shown due to its low frequency. I, in any case, don’t see a principal reason
for the assumption that -ń could not have occurred word-finally or in pre-consonantal position.” (p. 50; my
translation, orig. “Was den Konsonanten -ń betrifft, so kann eine PS Etymologie mit dem Laut -ń vielleicht nur
wegen dessen niedriger Frequenz nicht nachgewiesen werden. Ich jedenfalls sehe keinen prinzipiellen Grund
für die Annahme, dass -ń nicht im Wortauslaut bzw. in präkonsonantaler Position hätte vorkommen können.”)

42

3.2. Samoyedic 3. PREPARATION OF GOLD STANDARD

*e SA495,MI74ff SA495,MI63 SA495,MI39 SA495

ɑ (∼)

e e e e

Nganasan Enets Nenets Selkup
*ø SA495,JN467,MI73 SA495,MI62 SA495,MI39 SA495

u o oː y (⋆)

(⋆) Mikola (2004) claims, without providing any examples, that “PS *ö became ū” (p. 84)
in Selkup. There are only four entries in Janhunen (1977) that contain *ö, and only
one of those has a reflex that I could find in Irikov (1988), the source dictionary for the
NorthEuraLex Northern Selkup entries, namely *nöjnå “burbot” (“orig. “Quappe”), which
is listed as нюни [nyni] under ru. налим. This indicates that the sound change ø > y
proposed by Sammallahti (1988) is correct for the NorthEuraLex source, even though the
only affected entry does not occur in the actual word list, rendering this sound change
impossible to detect for SoInEn.

Nganasan Enets Nenets Selkup
*i SA495,MI73,76f SA495 SA495,MI39 SA495

ɯ | [LABiAL] _
i i i i

*y SA495,JN467,MI73 SA495,MI62 SA495,MI39 SA495

i u u y

*ɤ SA495,MI74 SA495,MI63 SA495,MI39 SA495

ɯ | _ r u | [LABiAL] _
ɑ i eː ɤ

*o SA495,JN467,MI73 SA495,MI64 SA495,MI39 SA495

u o o o

*ɯ SA495,JN467,MI73 SA495,MI63 SA495,MI39 SA495

u | [LABiAL] _
i i i i

*u SA495 SA495 SA495 SA495

u u u u

*ə MI73 SA495,MI62 SA495,MI38 SA495,MI83
e | [PALATAL] _
ə o ɑ ɑ

43

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

*∅ SA497,MI81 SA497,MI54f
ʲ | t,n,s,l _ i,y,e,ø ʲ | C _ [FRONT]

None of the Proto-Samoyedic diphthongs have been retained in their reconstructed form in
any of their descendant languages, making them especially hard to infer for any automated
method, and probably impossible for SoInEn in its current form. In Nganasan and Enets,
they were mostly collapsed into a smaller set of diphthongs, while they introduced long
vowels to the Nenets vocalic system. Selkup, again, is rather conservative and mostly
reduces them to monophthongs according to the prominent vowel.

Nganasan Enets Nenets Selkup
*VV SA495,MI77 SA495,MI63 SA495,MI40 SA495

ɒə̯ uɑ ɑː ɑː u
eə̯ ie e eː e (⋆)

øə̯ uɑ iɑ oː æ
iə̯ ie io iː i
yə̯ i io uː y
oə̯ uɑ uɑ oː o
ɤə̯ ɑ iɑ eː ɑ
uə̯ uɑ e uː u

(⋆) Sammallahti (1988) does not list the diphthong */eə/̯ and Mikola (2004) does not
discuss the reflexes of the Proto-Samoyedic diphthongs in Selkup at all. In Janhunen
(1977), the Selkup reflex of *keə̑j ‘tongue’ is še or se, indicating that there might have
been a sound change eə̯ > e in Selkup.

3.2.4.2 Obstruents
The environments for different consonant change in the Samoyedic languages are usually
word-initially, intervocally, and in the syllable coda. For the sake of brevity, I refer to
these general contexts in the first column as C- (unless otherwise specified, read: C | #
_), -C- (C | V _ V) and -C (C | _ C, _ #).

The Proto-Samoyedic obstruents usually (but not always) each undergo the same basic
changes: In Enets and Nenets, plosives are voiced intervocally. In the coda, obstruents
are reduced to a glottal stop in Nganasan, Enets and Nenets. In Enets, they are even
deleted entirely before voiceless plosives (abbreviated P). Selkup again proves to be very
conservative in this respect.

All four languages palatalize [k] before front vowels, albeit to varying degrees. Selkup
additionally changes [k] to [q] before non-high vowels. [ʈ͡ʂ] is merged with [t] in all four
languages.

44

3.2. Samoyedic 3. PREPARATION OF GOLD STANDARD

Nganasan Enets Nenets Selkup
*p JK70f,MI82 JK70f,MI42ff,65ff JK70f,MI55 JK70f

p- h p (⋆) p p
-p- h b b p
-p ∅ | _ P

b ʔ p p
(⋆) Sammallahti (1988, p. 497) lists a word-initial sound change p > f for Enets (there
called ‘Yenissei’). However, as Mikola (2004, p. 68) notes, this only applies to some Enets
dialects. Since word-inital */p/ has been retained in the NorthEuraLex data for Enets
(cf. e.g. пя [pʲa] ‘tree’ < *pä), I do not assume this sound change here.

Nganasan Enets Nenets Selkup
*t JK74ff,MI80 JK74ff,MI65ff JK74ff,MI42ff,55 JK74ff,SA498

t- t t t t
-t- t d d t
-t ∅ | _ P

ʔ ʔ ʔ t

*s JK73,MI80 JK73,MI65 JK73,MI42ff JK73

s- s s s s
-s- s s s s
-s ∅ | _ P

ʔ ʔ ʔ s

*ʈ͡ʂ JK57f,SA497,MI80,82 JK57f,SA497,MI65 JK57f,SA497,MI42ff,55 JK57f,SA497,MI85
ʈ͡ʂ- sʲ | _ i,e ʃ | _ i,e

t t t t
-ʈ͡ʂ- sʲ | _ i,e ʃ | _ i,e

t d d t
-ʈ͡ʂ ∅ | _ P

ʔ ʔ ʔ t

*k JK60ff,SA497,MI80f JK60ff,SA497,MI65 JK60ff,SA497,MI42ff,55JK60ff,SA497,MI85,86
k- sʲ | _ i,e s | _ [FRONT] sʲ | _ [FRONT] ʃ | _ i,e

q | _ [-HiGH]
k k χ k

-k- sʲ | _ i,e s | _ [FRONT] sʲ | _ [FRONT] ʃ | _ i,e
q | _ [-HiGH]

k h χ k
-k k | _ P ∅ | _ P

ʔ ʔ ʔ k

45

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

3.2.4.3 Nasals
The Proto-Samoyedic nasals are generally more stable than the obstruents, though they
are also partially reduced to glottal stops in Enets and Nenets (but not in Nganasan).
Selkup preserves them completely.

Nganasan Enets Nenets Selkup
*m JK65,MI82 JK65,MI66f JK65,MI56 JK65,SA498

m- m m m m
-m- m ∅ w m
-m ∅ | _ # (⋆)

m ʔ m m

*n JK66f,MI82 JK66f,MI66 JK66f,MI42ff JK66f,SA498

n- n n n n
-n- n n n n
-n ∅ | _ # (⋆)

ŋ | _ #
n ʔ ʔ n

*ɲ JK68 JK68 JK68 JK68

ɲ- ɲ ɲ ɲ ɲ
-ɲ- ∅ ∅ j ɲ

*ŋ JK69,MI82 JK69,MI66f JK69,MI42ff JK69

-ŋ- ŋ ∅ ŋ ŋ
-ŋ ∅ | _ # (⋆)

ŋ ʔ ʔ ŋ
(⋆) Word-final nasal deletion in Nganasan only applies in words with more than one syllable
(Mikola 2004, p. 82).

Nasal-obstruent clusters deserve special mention particularly because of Enets, which re-
duces them to geminate voiced stops matching the place of articulation of the cluster’s
obstruent.

Nganasan Enets Nenets Selkup
*NC JK82ff JK82ff,MI66 JK82ff,MI56 JK82ff

mp mb bː mb mp
mt mt dː md mt
nt nt dː n nt
nʈ͡ʂ nt dː n nt
ŋt t dː ŋd ŋt
ŋk ŋk ɡː ŋɡ ŋk

46

3.2. Samoyedic 3. PREPARATION OF GOLD STANDARD

In Nganasan and Nenets, a prothetic nasal ([ŋ] or [ɲ], depending on the following vowel)
has been inserted in words starting with a vowel.

Nganasan Enets Nenets Selkup
*∅ JK56,SA497,MI81 JK56,SA497,MI54

ɲ | # _ i,e ɲ | # _ [FRONT]
ŋ | # _ V ŋ | # _ V

3.2.4.4 Liquids and Glides
Liquids are unchanged in all languages except Enets, where non-initial [l] has been merged
with [r] and both are reduced to a glottal stop in the coda.

Nganasan Enets Nenets Selkup
*l JK63f JK63f,MI66,69 JK63f JK63f

l- l l l l
-l- l r l l
-l l ʔ l l

*r JK71f JK71f,MI66 JK71f JK71f

-r- r r r r
-r r ʔ r r

The glides [w] and [j] are very unstable in the Samoyedic languages, having been fortified
into plosives in Nganasan, Enets and, most prominently, Selkup.

Nganasan Enets Nenets Selkup
*w JK77f,SA497,MI80 JK77f,SA497,MI67f JK77f,SA497,MI54,56 JK77f,SA497,MI85
w- j | _ [FRONT]

b b w k
-w- b ∅ b ∅

*j JK58ff,MI80f JK58ff,MI68,69 JK58ff,MI40 JK58ff,SA497,MI85
j- dʲ dʲ j t͡ʃ
-j- dʲ j j d͡ʒ
-j j ∅ ː j

3.2.5 Challenges
While the Dravidian languages are still quite similar to each other, the Samoyedic lan-
guages have often diverged rather drastically, making them a challenging test case for
computational historical linguistics. As Janhunen (1998) notes:

“The phonological correspondences among the Samoyedic languages are for the
most part transparent to the professional eye, although a naïve native speaker

47

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

of any single Samoyedic language would often find it impossible to recognize
cognate items even in the immediately neighbouring language.” (p. 466)

Indeed, most of the consonant changes, such as palatalization of [k], glottalization of
obstruents or the spirantization of [p] into [h] (cf. Kannaḍa), observed in the Samoyedic
languages are rather common and not too surprising, and the vowels have perceptually very
similar reflexes in all of the daughter languages. What makes Samoyedic a complicated
case for naïve natives and especially for naïve computers is 1) the pervasiveness of sound
change, in that in many cases, the original sound is preserved in only a single or even
none of the descendants, 2) the scarcity of lexical material in general, and 3) the strong
dialectal variation in modern Samoyedic languages.

Remember the Nganasan, Nenets and Selkup cognates for “ten” discussed in section 1.3.1
(bî’ [biːʔ], ju’ [juʔ] and köt [køt], respectively): Deciding that these three words have
a common ancestor (*wüt) is not a trivial task for a computer that relies heavily on
symbol and sound similarity, even though the sound changes they have gone through are
quite regular. Since both vowels and consonants where heavily affected by sound change
in Samoyedic (as opposed to Dravidian, where there are basically no vowel changes at
all), every single phoneme in a word can be affected by sound change, as in the “ten”
example.

This does not only affect the quality of automated cognate judgments, but especially that
of reconstruction, a task that already involves a lot of speculation for human linguists when
none of the reflexes can be considered proto-sound candidates, as in the correspondences
b/j/k and iː/u/ø. This is especially true of proto-reconstructions that are not attested
in any of the daughter languages, as with Proto-Samoyedic *[ɯ], which has become [i]
in all four descendants, and can be distinguished from *[i] only in sound correspondences
occurring in a very specific context, namely after labial consonants, where we find both
i/u/i/i (going back to *[ɯ]) and ɯ/i/i/i (going back to *[i]). Reasoning that these two
extremely rare correspondences justify the reconstruction of two separate proto-sounds
that both yield the correspondence i/i/i/i outside of this context, all while not over-
interpreting equally rare nonsensical correspondences in other places, is an immensely
difficult (and likely impossible) task for a computer.

This problem is amplified particularly in Samoyedic by the noisiness of the lexical material
available. As initially mentioned, the Samoyedic languages (except Tundra Nenets) are
rather poorly documented, and the few sources available are likely documenting different
dialects, often leading to considerable variation in the lexical entries. In Janhunen (1977),
different sources give the Nganasan cognates of *mə̑kå “back” as ма́ку, móku orməku, those
for *jimä “glue” as jimi or d’iḿi, and those for *wåt3wə̑ “bedding” as bóba or bəbə. Most
of these inconsistencies concern the vowels, which are especially difficult to reconstruct
anyway given their great variation. Obviously, the sound changes that have taken place
according to the sources differ, which can be due to their respective age, but also due
to different dialects observed. The Enets cognates for *wåt3wə̑, for example, are given
as bá’a or bāa, and similarly, those for *sejt3wə̑ “seven” are se’o or sɛo. In one of these
dialects, the glottal stops that earlier replaced coda obstruents have vanished. This is of
course particularly problematic when mixing sources, but is also an issue with respect to

48

3.2. Samoyedic 3. PREPARATION OF GOLD STANDARD

the above given gold standard of sound changes when relying on a single source: The one
for the Enets data in NorthEuraLex, for instance, has no glottal stops represented at all,
making it impossible to reconstruct the corresponding gold standard sound changes on its
basis.

Finally, internal phonological processes of the individual languages can distort the results.
Nganasan words, for instance, undergo three different types of consonant gradation (Mikola
2004, p. 79f): The first operates depending on the number of preceding morae, a second,
slightly different type then applies to those left untouched by the first type, and finally,
nasals deleted by the first type are reintroduced in case the affected syllable begins with a
nasal. Due to the extreme complexity of these phenomena, I have not incorporated their
effects in the sound changes listed above, but they will of course be found in the lexical
data, providing another source of noise.

49

4 SoInEn, a PSL Model for Sound
Law Inference

This chapter introduces the Sound Law Inference Engine (SoInEn), a PSL model designed
to infer proto-phoneme reconstructions for sound correspondences and conditioned sound
laws from lexical data of modern languages. SoInEn’s rules are modeled after the reasoning
performed by human historical linguists when applying the comparative method. This
could not only provide interesting insights into how much each of these reasoning steps
contribute to the final outcome, it also allows the system to inform about its reasons for
coming to a certain conclusion in a way that makes sense to the linguist user.

SoInEn is part of the larger EtInEn system for etymological inference. Those features
of EtInEn that are relevant to SoInEn and the graphical user interface of SoInEn inside
EtInEn are briefly introduced in section 4.1. Not all steps of the comparative method are
feasible to be performed via PSL. Those tasks that had to be outsourced, notably cognacy
judgment and alignment, as well as general linguistic knowledge submitted as observations
are discussed in section 4.2. The actual inference of SoInEn had to be split into three
separate inference phases for performance reasons, namely proto-inventory reconstruction,
context detection and sound law inference. The predicates and rules of each phase as well
as the procedure for generating candidate target atoms are discussed in sections 4.3, 4.4
and 4.5, respectively.

4.1 Integration into EtInEn
SoInEn was developed as a module of the under-development Etymological Inference En-
gine (EtInEn), a mainly PSL-based system solving various tasks in historical linguistics,
such as cognacy and loanword detection, morphological analysis, sound law inference and
proto-language reconstruction. In contrast to other computational tools in historical lin-
guistics, where the role of the linguist user is usually limited to the provider of input and
receiver of output, EtInEn is designed to be guided interactively by the user towards its
result, accepting corrections and suggestions, and adapting its output accordingly. Due
to the PSL backend, it is also able to provide human-readable explanations for its deci-
sions, giving the user insights into its reasoning process. Any lexical database in CLDF

50

4.1. Integration into EtInEn 4. SOINEN ARCHITECTURE

format can be input to EtInEn, allowing linguists to explore and analyze their own data
sets.

Apart from developing the linguistic components, the EtInEn group has also built a wrap-
per around PSL, providing extended support for manipulating the atom database, manag-
ing multiple inferences on (partially) shared atoms, as well as interpreting and verbalizing
inference results. While this infrastructure was primarily developed for EtInEn, it can
also be used independently for other projects.

Finally, EtInEn comes with a graphical user interface for managing the input data, config-
uring and running the inferences, and inspecting the results for each linguistic component
in a user-friendly, non-technical manner. In addition, it provides a component for inspec-
tion of all atoms with human-readable explanations for how the individual ground rules
influenced the atom’s belief value. This component, the Fact Viewer, is also going to be
available as a standalone tool for use in other PSL projects.

Since SoInEn is embedded inside EtInEn, it is necessary to introduce some of EtInEn’s
features in more detail. First, there are specific naming conventions for predicates of
EtInEn components, which I briefly introduce in section 4.1.1. EtInEn’s PSL infrastructure
communicates directly with the SQL database set up by LINQS PSL for atom storage,
providing important new manipulation options for atoms, some of which are relevant for
SoInEn (section 4.1.2). Finally, I present the EtInEn user interface, in particular the parts
visualizing SoInEn, in section 4.1.3.

Links to the repositories containing the source code of SoInEn, EtInEn, and the PSL
wrapper with the Fact Viewer can be found in appendix A.

4.1.1 Predicate Naming Conventions
The predicates of EtInEn PSL models follow strict naming conventions. The names of
regular, “meaningful” predicates consist of exactly four characters, one uppercase followed
by three lowercase. The initial uppercase character is a prefix signaling the linguistic
domain of the predicate, whereas the three lowercase letters are its actual name. The
name of the SoInEn predicate representing sound laws, for instance, is not SoundLaw, but
Plaw, where P marks the ‘phonology’ domain, and law is the predicate’s name. Other
domain prefixes currently used inside EtInEn are, for example, M for ‘morphology’ or E for
‘etymology’. SoInEn exclusively uses the P prefix.

There is an additional set of prefixes for auxiliary predicates that refer to those regular
predicates. These auxiliary prefixes are attached before the domain prefix. Existential
predicates, for instance, are marked by X. Hence, the name of the existential predicate of
Plaw is XPlaw. Similarly, predicates that provide priors for regular predicates are prefixed
V (for ‘value’).

4.1.2 Database Manipulation
The LINQS implementation of PSL stores a model’s atoms in an SQL database. While
the LINQS interface does provide some methods for inserting, retrieving and deleting

51

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

atoms, several functionalities required by EtInEn were missing, which is why its PSL
infrastructure interacts directly with the SQL backend for atom manipulation.

One of the key features missing in the LINQS implementation was the possibility to fixate
or release individual or sets of atoms, i.e. changing them to observations or targets after
insertion1. Since EtInEn is supposed to be an interactive system, it is crucial that the
user is able to select some atoms from an inference result for re-inference while keeping
the belief values of the others fixed. Also, some EtInEn components, notably SoInEn, run
several consecutive inferences with different targets, which at each step requires fixation
of the previous inference’s targets.

4.1.3 User Interface
The graphical user interface of EtInEn is developed within the JavaFX framework2. It
consists of multiple windows, each hosting a single component or function of the system.
This allows the user to freely arrange the individual parts of the system on his desktop,
and facilitates working with several monitors. EtInEn’s windows are not independent of
each other, however: User interaction in one window is propagated through the entire
system, allowing other windows to react as well. Figure 4.1 illustrates this: The Concepts
window lists all semantic concepts represented in the provided database. Selecting the
concept ‘louse’ filters the lexical data in the Forms window to only show translations for
‘louse’. Finally, upon selecting the Swedish entry lus from the ‘Forms’ window, the Cogset
window immediately displays the alignment of lus and its cognates.

In addition to the database inspection windows shown in Figure 4.1, there is a window for
each inference component. The one I designed for SoInEn consists of three sections, only
one of which can be expanded at a time: Initially, the Inference section is displayed, which
can be seen in Figure 4.2. Here, the inference can be configured and started, and the user
is informed about its progress while it is running. The input languages are selected in the
Languages window.

Once the inference has finished, the second section can be opened to review the inferred
proto-phoneme Inventory. As Figure 4.3 shows, the candidate consonants and vowels
are arranged as in the IPA chart for convenient inspection. The color of the individual
phonemes indicates their belief value, varying between white (0.0) and dark yellow (1.0),
which can also be made explicit by hovering over the symbol.

The final Sound Changes section, shown in Figure 4.4, displays the sound correspondences
found, their proto-reconstructions, the regular contexts in which they occur, and the sound
laws deduced. Again, the color indicates belief, which is also displayed explicitly in the
Value columns. The dropdown cells in the Support column list all cognate sets whose

1LINQS handles the distinction between observations and targets by separating the atom space in the
database into several partitions. Those atoms that reside in write partitions are considered targets and will
have their belief values changed during inference, while those in read partitions are considered observations.
The RDBMSDatabase class does have a moveToWritePartition method, but no moveToReadPartition, which is
actually the more common use case in EtInEn.

2Note that the EtInEn GUI is still under active development. While all of the features that I discuss are
already fully functional, some windows contain placeholders for not-yet-implemented functions.

52

4.1. Integration into EtInEn 4. SOINEN ARCHITECTURE

Figure 4.1: The main windows of the EtInEn user interface for inspecting the input database are
informed about each other’s state. Because the Swedish word for ‘louse’ was selected in the Forms
window, the Cogset window displays the associated cognate set.

Figure 4.2: SoInEn’s Inference pane is connected to the Languages window.

53

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

Figure 4.3: In SoInEn’s second section, the inferred proto-language inventory is displayed.

Figure 4.4: The cognate sets that provide support for a sound correspondence are displayed in the
Cognate Set window upon selection.

54

4.1. Integration into EtInEn 4. SOINEN ARCHITECTURE

Figure 4.5: The Fact Viewer provides explanations for the inference results by verbalizing the applied
ground rules.

alignments match the respective sound correspondence. Selecting a cognate set from the
list changes the Cognate Set window to display the alignment of its members. This allows
for easy investigation of the evidence for a sound correspondence.

The sound correspondences can be filtered via the text fields below, selecting e.g. only
those correspondences for which a certain proto-sound was reconstructed. The proto-
sound filter of the sound correspondences also filters the sound law display. Clicking on
a proto-phoneme in the inventory pane sets the proto-sound filter as well (and opens the
Sound Changes section).
Users who would like to learn how SoInEn arrived at the belief for some fact can double-
click on any proto-phoneme, sound correspondence, context or sound law to open the Fact
Viewer on the corresponding PSL atom. As mentioned before, the Fact Viewer provides
human-readable explanations for an atom’s belief value by verbalizing the ground rules
containing this atom.

Figure 4.5 shows the Fact Viewer’s information on the atom Prec(t͡ʃ/t͡ɕ/t͡ʃ/t͡ɕ, t͡ʃ) (see
section 4.3): Below the atom string, it first provides an explanation of the meaning of this
atom. It then verbalizes ground rules that put downward pressure on the atom’s belief
value in the WHY NOT pane, and ground rules that apply upward pressure in the WHY
pane. The rule verbalizations contain hyperlinks leading to the other atoms participating
in the respective ground rule. In addition, there is a filterable list of all atoms used during
inference on the left, which can be selected for inspection. The ‘backward’ and ‘forward’

55

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

buttons to the left of the atom string aid in navigating through the rules and atoms.
Finally, there are five buttons on the right of the atom string that allow the user to set
an atom’s belief to 1.0 or 0.0, indicate a user preference for it by means of a special prior
atom, release a fixated atom for the next inference, or delete and blacklist it.

4.2 Providing World Knowledge
Some of the initial steps of the comparative method can better be done outside of PSL;
partially because they are mechanical in nature and do not benefit from logical reasoning,
and partially because the resulting PSL problems would be too complex in structure to be
inferred efficiently, while there exist well-established algorithms to carry out the task with
satisfying results. The affected steps of the comparative method are steps 1 and 2, namely
cognate jugdments (section 4.2.1), alignment of the resulting cognate sets (section 4.2.2)
and extracting sound correspondences from these alignments (sections 4.2.3 and 4.2.4). In
addition, the model needs to be provided with linguistic knowledge about sound classes
(section 4.2.5) and the general plausibility of certain sound changes (section 4.2.6).

4.2.1 Cognate Judgments
The task of detecting cognate sets actually lends itself well to PSL, since it naturally
involves reasoning over several possibilities in the face of a varied collection of evidence.
However, perhaps the most important kind of evidence for cognacy judgments are the
genetic relationships among the involved languages and sound changes that happened
between them; evidence that is the very outcome of SoInEn. Therefore, some initial
cognate judgments have to be provided, and could later be refined and revised using the
conclusions SoInEn has drawn from them. In fact, a model for cognacy and borrowing
detection is already being designed within the EtInEn system, but is not yet at a stage
where it could serve as input to SoInEn.

The NorthEuraLex data I use as input to SoInEn was enhanced with cognate set annota-
tions that were computed using the UPGMA algorithm with similarity scores generated
with the Information-Weighted Distance with Sound Correspondences (IWDSC) method,
as described in Dellert (2018). IWDSC is a novel similarity score that is computed dur-
ing Information-Weighted Sequence Alignment (IWSA), a modification of the well-known
Needleman-Wunsch algorithm for sequence alignment that uses PMI-based phoneme sim-
ilarity scores for improved word alignments.

Being an automated and not a manual expert annotation, the NorthEuraLex cognate
judgments are expected to be faulty in places. One major shortcoming is that only words
referring to the same concept are even considered for cognacy. Hence, related words that
have shifted in meaning or belong to different parts of speech are never assumed to be
cognates. Hence, SoInEn must be robust enough to draw the right conclusions in spite of
noisy cognacy data.

56

4.2. Providing World Knowledge 4. SOINEN ARCHITECTURE

olo muldu mʊldʊ m – ʊ – l d – ʊ
smj mållde mɔlːdɛ m ɔ l – l d – ɛ
sma mueltie mʉɛltiɛ m – ʉ ɛ l t i ɛ
hun föld føld f – ø – l d – –

Figure 4.6: Faulty alignment for the Olonets Karelian (olo), Lule Saami (smj), Southern Saami (sma)
and Hungarian (hun) words for ‘earth (soil)’ (Dellert and Jäger 2017).

4.2.2 Alignment
Experiments with implementing multiple sequence alignment in PSL showed that the
resulting dependency structure is too strongly connected for fast and scalable inference.
Not only would it require up to nk atoms to model the alignment alone, where n is the
maximum length of the k involved words, but these atoms would also be heavily connected
via ground rules excluding contradictive alignments and providing evidence from other
sounds in the same column. Inferring alignments in PSL is therefore not feasible, which
is why SoInEn relies on well-established dynamic programming algorithms to perform it
externally.

For pairwise sequence alignment, I use the IWSA implementation of Dellert (2018). To
combine these aligned pairs into an arbitrarily large multiple sequence alignment (MSA),
I implemented the T-Coffee algorithm developed by Notredame, Higgins, and Heringa
(2000)3, which relies on the preprocessed pairwise alignment information to guide the
multiple sequence alignment process for more reliable results.

Again, the automated nature of the process is sometimes prone to errors. As with the
original Needleman-Wunsch alignment algorithm, insertions and deletions are especially
difficult to place correctly for IWSA. Consider the faulty alignment in Figure 4.6 of some
Uralic words for ‘earth (soil)’. While most of the sounds are aligned properly, the additional
/l/ in Lule Saami mållde is not correctly identified as an insertion, but grouped with the
vowels of the other words.

The source of this error does neither lie in the MSA assembled by T-Coffee nor is it a design
flaw in IWSA. It is caused by the phoneme similarity scores IWSA uses as substitution
costs. While Needleman-Wunsch operates with gap penalties to compute costs for insertion
and deletion separately from those for substitution, the inferred correspondence model
IWSA draws its similarity scores from also comes with scores for individual phoneme
insertion or deletion. In this model, insertion of vowels is generally cheaper than insertion
of consonants (which coincides with linguistic intuition). In the pairwise alignment of
Olonets Karelian muldu and Lule Saami mållde, the score for inserting /ɔ/ is −1.43 while
the score for inserting /l/ is −3.36. Also, the change from /ʊ/ to /l/ gets a much lower
score than /l/ insertion (−1.8), reflecting the proximity of (velarized or ‘dark’) /l/ to
rounded high vowels. Overall, the difference in insertion costs is large enough to yield an
incorrect pairwise alignment which is then propagated into the MSA in Figure 4.6.

3Many thanks to Gerhard Jäger who provided me with his Python implementation of the algorithm as a
template.

57

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

This problem is hard to resolve, also because the error-causing similarity scores are actually
justified, as explained above. It is also not within the scope of this thesis to improve IWSA.
Still, the faulty alignments cause noise in the sound correspondences which are the most
basic observations that will be fed to SoInEn, so the system needs to be robust enough to
deal with that noise.

4.2.3 Counting Sound Correspondences
Sound correspondences were initially supposed to be inferred within the PSL model. The
task seems straightforward: Sounds that are frequently aligned together are likely to
constitute a regular sound correspondence. However, frequency effects are difficult to
model in PSL and the possibility of languages missing in alignments further complicates
the issue.

It is impossible to directly formulate a PSL rule that states “if x is frequently observed,
then y”. We can have a rule like this:
Aligned(Sounds) ‐> SoundCorrespondence(Sounds)

However, this alone will set the belief of SoundCorrespondence(Sounds) to 1.0 as soon
as a single Aligned(Sounds) is observed. To counterbalance this, we would need nega-
tive evidence – but what can be evidence against a sound correspondence? The solu-
tion that comes closest to modeling a frequency effect would be a high negative prior on
SoundCorrespondence that can only be overcome with enough positive evidence. The op-
timal weight of this will be rather data-dependent though, having to be higher when more
alignments are available or when the data is expected to be noisier, and lower when there
is fewer but cleaner data.

The problem of gapped alignments also still needs to be considered. While a sound corre-
spondence consists of one sound for each target language, not all target languages might
participate in every cognate set, and can therefore be missing in an alignment. The more
languages we infer over, the more likely it is that alignments will be incomplete, so dis-
carding all gapped alignments will greatly reduce the amount of evidence available. We
could reformulate the above rule as follows:
Aligned(PartialSounds) & Compatible(PartialSounds, CompleteSounds) ‐>

SoundCorrespondence(CompleteSounds)

What makes a gapped alignment compatible with a sound correspondence? The easiest
definition is to interpret the gaps as wildcards and see if the sound correspondence can be
matched by this. For example, h/p/?/p would be compatible with h/p/p/p, and ?/p/p/?
with p/p/p/p. However, according to this definition, ?/p/p/? would additionally support
e.g. h/p/p/p and b/p/p/b. This is problematic: No linguist would consider ?/p/p/?
as evidence for these two sound correspondences, since the sound changes they display
are not captured by ?/p/p/?. I therefore extend the definition of compatibility by the
requirement that if the sound correspondence contains two or more different sounds, the
gapped alignment must also contain two or more different sounds to be compatible.

58

4.2. Providing World Knowledge 4. SOINEN ARCHITECTURE

0

0

0
0 5

0 1

0 0 1

0 0 3

0
0 0 3

0 0 1

0 0 0 1

a

a

b a

? ?

b b ?
?

b a

b b ? b

? b a?

b b ?

Figure 4.7: An example of a Gapped Frequency Trie.

The next issue is that not all sound correspondences might be captured by a complete
alignment. We might observe b/p/p/?, b/?/p/b and ?/p/p/b, but never b/p/p/b as
a whole. Still, we would like to consider b/p/p/b a possible sound correspondence. It
is straightforward to introduce a merge operation on partial alignments with matching
literals, like b/p/p/? and b/?/p/b, that fills the gaps of one alignment with the literals
of the other. But what about two alignments like h/p/?/? and h/?/p/p? Is an overlap
of a single literal enough to assume a sound correspondence h/p/p/p? We might want to
have a parameter m, the minimum number of overlaps required for merging two partial
alignments.

Finally, a partial alignment like h/p/?/? should not contribute as much evidence as a
full alignment h/p/p/p to the sound correspondence h/p/p/p. The uncertainty caused
by the gaps in h/p/?/? must be captured somehow. This means that either we need
variable belief values of Compatible, assigning lower belief to alignments with more gaps,
or variable rule weights depending on the number of gaps involved.

Overall, it seems exaggerated to perform this rather mathematical task in PSL, since it
does not naturally involve any logical reasoning. I have therefore decided to calculate
sound correspondence frequency priors in the range [0, 1] outside of PSL and inject them
as observations into the system.

4.2.3.1 The Gapped Frequency Trie
All alignment columns are stored and counted in a Gapped Frequency Trie, a tree-like data
structure where each edge represents one sound in the alignment and the leaves contain
the frequency of the (possible gapped) alignment spelled out by its path. Figure 4.7 shows
an example of such a trie, where the alignments a/a/?/?, a/b/b/?, b/?/b/a and ?/b/b/?
were observed once, a/?/b/a and b/b/?/b were observed three times and the complete
alignment a/a/b/a was observed five times.

59

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

co l l ec tUngappedFrequenc ie s (N , S , m) :
F ← x 7→ 0
i f N i s l e a f :

F (S) ← N .freq
e l s e :

f o r e in non−gap edges :
S′ ← S · e\ text { . symbol}
i f e has gap edge eg :

Sg ← S · ?
merge (eg.child , e.child , Sg , S′ , S′ , F , |S| , m)

F ′ ← co l l ec tUngappedFrequenc ie s (e.child , S′ , m)
F ← x 7→ F (x) + F ′(x)

re turn F

merge (N1 , N2 , S1 , S2 , Sc , F , l , m) :
i f N1 , N2 are l e av e s :

i f l ≥ m :
i f i sMergeab le (Sc , S1) :

F (Sc) ← F (Sc)+ normalizedFrequency (N1.freq , S1)
i f i sMergeab le (Sc , S2) :

F (Sc) ← F (Sc)+ normalizedFrequency (N2.freq , S2)
e l s e :

f o r e1 in N1.edges :
S′
1 ← S1 · e1.symbol
i f e1 i s a gap edge :

f o r e2 in N2.edges :
i f e2 i s not a gap edge :

S′
c ← Sc · e2.symbol

S′
2 ← S2 · e2.symbol

merge (e1.child , e2.child , S′
1 , S′

2 , S′
c , F , l , m)

e l s e :
S′
c ← Sc · e1.symbol
i f N2 has matching edge e2 :

S′
2 ← S2 · e2.symbol

merge (e1.child , e2.child , S′
1 , S′

2 , S′
c , F , l + 1 , m)

i f N2 has gap edge eg :
S′
2 ← S2 · ?

merge (e1.child , eg.child , S′
1 , S′

2 , S′
c , F , l , m)

i sMergeab le (Sc , Sg) :
r e turn |{c ∈ Sc}| = 1 or |{c ∈ Sg} \ {?}| ≥ 2

normalizedFrequency (f , S) :
r e turn f · (|S| −#”?”(S))/|S|

Figure 4.8: The algorithm for ungapping a Gapped Frequency Trie, started by calling getUngapped-
Frequencies on the root node with an empty sequence S.

60

4.2. Providing World Knowledge 4. SOINEN ARCHITECTURE

To obtain the ungapped alignments and their frequencies from this, the algorithm in Fig-
ure 4.8 is used. Starting from the trie’s root node, the program traverses through the
trie, merging gapped alignments to compatible alignments and collecting the completed
sequences together with their frequencies. It consists of two separate procedures: The
traversal through the trie in getUngappedFrequencies and the mergeing of gapped sub-
tries.

The method getUngappedFrequencies frames the program. It runs on a node N , the
path to which is the sequence (or alignment) S. The parameter m refers to the minimum
number of overlaps discussed before. In SoInEn, it can be set by the user, but has a default
value of m = max(2,

⌈
n
2

⌉
) where n is the number of target languages. Our return value is

the function F which maps a complete alignment to its frequency.

GetUngappedFrequencies is only called along non-gap edges, so when N is a leaf, we know
that S is a complete alignment, and we can inject its frequency stored in N into F .
Otherwise, we loop through its non-gap edges. For each edge e, we extend a copy S′ of
the path S by the symbol labeling the edge. If N has a gap edge eg, we attempt to merge
the subtrie rooted by the child of gap edge eg to the subtrie rooted by the child of e. Then
we recurse on e’s child and the extended sequence S′.

The merge method traverses two subtries in parallel, rooted by nodes N1 and N2, with S1

and S2 being the sequences or paths leading to the respective nodes. Sc is the completed
sequence of the two where the gaps of one have been filled in by the literals of the other.
Finally, l refers to the number of literal matches so far. Merge is originally called by
getUngappedFrequencies on the children of eg and e and their respective paths. Sc is
initialized as the path to e’s child, because it is guaranteed to contain no gaps. l then is
the length of S, since until N , only literals were encountered on the path.

If merge has reached the bottom of the subtries, it is time to check the compatibility
criteria: Has the minimum number of literals m been matched (l ≥ m)? Are any of the
two potentially gapped sequences Si (i ∈ {1, 2}) compatible with the completed sequence
Sc, i.e. does Sc consist of all equal symbols or does Si contain at least two different
symbols? If yes, the frequency F (Sc) of the complete sequence Sc is updated by adding
the normalized frequency of Si. The normalization is to account for the insecurity that
comes with being gapped, and is applied by scaling Si’s raw frequency by the percentage
of literals in the sequence (|Si|−#”?”(Si)

|Si|). Thus, alignments with more gaps contribute less
to the overall frequency of a completed alignment.

If N1 and N2 are not leaves, we loop through the outgoing edges of N1, extending S1 by
the respective edge’s symbol. If it is a gap edge, we recursively merge its subtrie to the
subtries of N2’s non-gap edges. Otherwise, it is merged to N2’s gap subtrie (if existent)
and N2’s subtrie with matching symbol (if existent).

Via this procedure with m = 1, we will finally arrive at the following completed alignments
and frequencies for the example in Figure 4.7:
F(a/a/b/a) = 7.25 (a/a/b/a: 5 * 1.0, a/?/b/a: 3 * 0.75)
F(a/b/b/a) = 3.0 (a/b/b/?: 1 * 0.75, a/?/b/a: 3 * 0.75)
F(b/b/b/b) = 2.75 (b/b/?/b: 3 * 0.75, ?/b/b/?: 1 * 0.5)

61

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

0 2 4 6 8 10 12 14

0

0.5

0.9
1

Frequency

Be
lie

f

Figure 4.9: The function used to convert sound correspondence frequencies into belief values.

The gapped alignments a/a/?/? and b/?/b/a could not be merged into any completed
alignment. Also, a/a/?/? and ?/b/b/? could not be counted as evidence for a/a/b/a and
a/b/b/a, respectively, since they did not reflect the symbol variation in the completed
alignments. When setting m = 2, the values for a/a/b/a and a/b/b/a are the same, but
the completion b/b/b/b is not included, since the overlap between b/b/?/b and ?/b/b/?
is not large enough to merge them.

To convert these frequencies to belief values in the range [0, 1], I apply the upper half of
a logistic function. The logistic function is a simple sigmoid (S-shaped) function with the
equation

f(x) =
M

1 + e−k(x−x0)
(4.1)

where M is the function’s maximum, x0 is the midpoint, and k determines the steepness
of the curve. The monotonically increasing, concave shape of the logistic function’s upper
half has the effect that the resulting belief saturates after some frequency threshold, im-
plementing the idea that if an alignment has been observed a certain number of times, it
can be safely assumed that it is indeed a regular sound correspondence.

For the sound correspondence frequencies, I use the variant

f(x) = max(0, 2

1 + e−0.5(x−1)
− 1) (4.2)

which results in the curve displayed in Figure 4.9. An alignment must be observed more
than once to be even considered for sound correspondence status and only saturates
(reaches a belief over 0.9) after a frequency of ∼ 6.89. In the above example with m = 1,
we get a belief of ∼ 0.92 for a/a/b/a, ∼ 0.46 for a/b/b/a, and ∼ 0.41 for b/b/b/b.

4.2.4 N-Grams of Sound Correspondences
In addition to the frequencies of single sound correspondences, we also need to collect the
frequencies of sequences or n-grams of sound correspondences as evidence for conditional

62

4.2. Providing World Knowledge 4. SOINEN ARCHITECTURE

tam maram mʌɾʌm m ʌ ɾ – ʌ m
mal maraṁ maɾʲam m a ɾ ʲ a m
kan mara məra m ə r – a –
tel – – ? ? ? ? ? ?

Figure 4.10: Dravidian alignments of the NorthEuraLex cognate set containing the Tamiḻ (tam),
Malayāḷaṁ (mal) and Kannaḍa (kan) words for ‘tree’ (Dellert and Jäger 2017). Telugu (tel) has no
cognate inside NorthEuraLex.

sound laws, and these need to be transformed into belief values as well.

So while reading in alignments, we also collect bigram and trigram frequencies of alignment
columns, padded with the wound boundary symbol #. From the Dravidian alignment
in Figure 4.10 (repeated and extended from Figure 1.1) for instance, we would get the
following alignment n-grams:

Bigrams: Trigrams:
(#/#/#/?, m/m/m/?) (#/#/#/?, m/m/m/?, ʌ/a/ə/?)
(m/m/m/?, ʌ/a/ə/?) (m/m/m/?, ʌ/a/ə/?, ɾ/ɾ/r/?)

(ʌ/a/ə/?, ɾ/ɾ/r/?) (ʌ/a/ə/?, ɾ/ɾ/r/?, –/ʲ/–/?)
(ɾ/ɾ/r/?, –/ʲ/–/?) (ɾ/ɾ/r/?, –/ʲ/–/?, ʌ/a/a/?)
(–/ʲ/–/?, ʌ/a/a/?) (–/ʲ/–/?, ʌ/a/a/?, m/m/–/?)
(ʌ/a/a/?, m/m/–/?) (ʌ/a/a/?, m/m/–/?, #/#/#/?)

(m/m/–/?, #/#/#/?)
After the Frequency Trie containing the simple sound correspondence frequencies has been
ungapped, the gapped alignments in the n-grams are replaced by the completions generated
by the trie to receive sound correspondence n-grams. As with the ungapped alignment
frequencies, the raw n-gram frequencies are scaled by the percentage of literals present in
the original n-gram. If, for example, ʌ/a/a/? were completed as both ʌ/a/a/a or ʌ/a/a/ʌ,
m/m/–/? as m/m/–/m, and #/#/#/? as #/#/#/#, the final alignment trigram in
the above list would yield the two sound correspondence n-grams (ʌ/a/a/a, m/m/–/m,
#/#/#/#) and (ʌ/a/a/ʌ, m/m/–/m, #/#/#/#), both with frequency 3

4 .

To convert the obtained frequencies into belief values, we again use the upper half of a
logistic function. Since bigram and trigram data naturally is more sparse than the unigram
data collected in the trie, we set the steepness k to 1 (instead of 0.5) for quicker saturation
and the midpoint x0 to 0 to already take n-grams with raw frequency 1 or less into account.
The resulting function is

f(x) =
2

1 + e−x
− 1 (4.3)

which, as illustrated in Figure 4.11, saturates (reaches belief ≥ 0.9) already at frequency
∼ 2.99.

4.2.5 Sound Classification
To estimate the likelihood of a certain sound change and to produce generalized contexts
for sound change, SoInEn requires a theory of sound classes and features: It needs to

63

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

0 2 4 6 8 10 12 14

0

0.5

0.9
1

Frequency

Be
lie

f

Figure 4.11: The function used to convert sound correspondence n-gram frequencies into belief values.

know what a vowel or a fricative is, and that rounded vowels contrast with unrounded
vowels.

To retrieve these sound classes, I first extracted the features for all 122 IPA graphemes oc-
curring in NorthEuraLex from the Cross-Linguistic Transcription Systems (CLTS) database
(List, Anderson, et al. 2019; Anderson et al. 2018). These consist of voicedness, manner
and place of articulation (plus, if applicable, lateral or sibilant annotation) for consonants,
and roundedness, horizontal and vertical position for vowels. In analogy to the laterals,
I added the rhotic feature to all ‘r-like’ consonants. All phonemes can be unambiguously
referred to by a combination of these basic features.

The resulting basic features were then grouped together into superclasses that historical
linguists would commonly like to refer to, such as liquids, continuants or sonorants. These
superclasses are defined in terms of the subclasses they can be partitioned into, such that
each sound in the superclass belongs to exactly one partitioning subclass. They can be
defined multiple times if there are several possible partitionings. The class of vowels, for
instance, can be partitioned according to the following criteria:

Roundedness: rounded, unrounded
Horizontal position: front, near-front, central, near-back, back
Vertical position: open, near-open, open-mid, mid, close-mid, near-close, close

These partitions allow reasoning about sound classes, for example when inferring a general
context for some sound change: Competing sound classes contradict each other (e.g. the
sound change cannot have happened next to unrounded vowels if it was already concluded
that it happened next to rounded vowels), and the observation of several competing sub-
classes suggest the superclass context (e.g. the observation of rounded and unrounded
vowels should entail the general context ‘vowel’).

This subclass-superclass structure implies a hierarchy of sound classes, which are made
explicit by assigning each sound class a level following their topological order, such that
every sound class has a lower level than all of its subclasses. Overall, this leads to five

64

4.2. Providing World Knowledge 4. SOINEN ARCHITECTURE

levels, where level 1 consists only of the ‘anything’ class that contains all sounds, defined
by the contrasts vowel vs. consonant or obstruent vs. sonorant, and level 5 contains all the
basic features extracted from CLTS.

The full list of sound classes and partitions can be found in appendix B.

4.2.6 Sound Transition Matrix
As mentioned in section 1.3.1.3 when discussing the comparative method, reconstruction
decisions are usually also guided by the linguist’s knowledge about what is a common,
plausible sound change. Since this directly depends on the reconstructions for other lan-
guages, we cannot infer this knowledge inside PSL, or at least we need some initial ideas
to begin with. Unfortunately, there is no comprehensive gold standard list of common
sound changes among the language families of the world, so I needed to generate such a
list myself. The result is a sound transition matrix with transition frequency scores in the
interval [0, 1] for each possible sound change between the n = 122 IPA symbols occurring
in the NorthEuraLex database.

In order to count sound change frequencies, we need sound changes, and for this, we need
proto-sound reconstructions, the very goal of SoInEn’s inference. To approximate a history
of sound changes, I used an implementation of the Sankoff algorithm by Johannes Dellert.
Sankoff successively reconstructs ancestral word forms along the edges of a language tree,
where the leaves point to the aligned word forms of the modern languages, yielding a
number of sound changes from each node in the tree to its child nodes. As input, I used
the MSAs that are also the basis for the sound correspondences (cf. section 4.2.2) and the
Glottolog 3.0 tree reduced to the languages in NorthEuraLex (Dellert 2017).

The naive approach to generate transition scores τ(s, t) for the sound change from a source
sound s to a target sound t from the resulting raw sound change frequency f(s, t) would
be to use the percentage of sound changes s→ t among all sound changes from s:

τ(s, t)
?
=

f(s, t)∑n
i=1 f(s, ti)

(4.4)

This poses a problem: In the vast majority of cases, the sound remains unchanged. For
instance, /t/ changed to itself in 91.46%, /f/ in 94.86% and /ɡ/ in 87.15% of all cases.
Still, there are real sound changes for these sounds that are more frequent than others,
and this should be reflected in the belief values. However, most transition percentages
from sounds other than the targets itself range between 2% and 0.1% (some even lower),
all of which effectively constitute a belief value of 0. /d/, for example, is a target sound
of /t/ in only 1.11% of cases; directly translated into belief values, a sound change from
/t/ to /d/ would be virtually prohibited, even though linguists would certainly want this
common sound change to receive a high belief.

We would like to assign high belief to sound changes that occur frequently, but we do not
necessarily need to distinguish more frequent changes from less frequent changes above a
certain frequency threshold. For instance, it would be fine to assign a belief of 1 to both

65

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

Dravidian

South Dravidian I

Tamiḻ-Kota

Tamiḻ Malayāḷaṁ

Kannaḍa

Telugu

6.43 %

14.89 %

42.26 % 27.59 %

34.29 %

34.89 %

Figure 4.12: NorthEuraLex’ Dravidian languages in the reduced Glottolog tree with innovativeness
values.

/t/ → /t/ and /t/ → /d/, since both are plausible sound changes, even though /t/ →
/t/ is notably more frequent than /t/ → /d/. To balance out the amount of identity
transitions and true sound changes a little bit, we might also want to put more weight
on sound changes observed in languages that are generally more innovative, in that have
undergone more actual sound changes from their parent language.

4.2.6.1 Innovativeness
Let fL(s, t) be the number of sound changes from s to t into a languge L from its di-
rect parent in the Glottolog tree. The innovativeness ν(L) of that language then is the
percentage of true sound changes:

ν(L) =

∑
s ̸=t fL(s, t)∑
fL(s, t)

(4.5)

The resulting value is a straightforward indicator of how much the daughter language
differs from its parent phonologically. However, it is also rather dependent on the lan-
guages’ phonetic transcription, the language coverage of the underlying database (in our
case NorthEuraLex), the alignments and the resulting reconstructions of the Sankoff al-
gorithm.

Consider, for instance, the innovativeness measures of the Dravidian languages displayed
in Figure 4.12. Here, Tamiḻ seems to be the most innovative language, even though it is
actually phonologically quite conservative. Malayāḷaṁ, on the other hand, seems to be the
least innovative, but as discussed in section 3.1.5, it has most generously adapted Sanskrit
phonemes.

One of the problems with Tamiḻ here is that the phonetic transcription in NorthEuraLex,
rather than being phonemic, sticks close to actual pronunciation. Therefore, short /a/, for
instance, is (in version 0.9) transcribed as [a] in Malayāḷaṁ, as [ʌ] in Tamiḻ and Telugu,

66

4.2. Providing World Knowledge 4. SOINEN ARCHITECTURE

and as [ə] or [a] (depending on the position in the word) in Kannaḍa. This leads to words
containing /a/ often not being reconstructed as [ʌ] by Sankoff, producing a sound change
into Tamiḻ where there actually is none.

A general issue with conservative languages is that they usually stick out phonetically,
having resisted sound change while their siblings have drifted away from them. Since
Sankoff knows nothing about the conservativity of these languages, it will often go with
the majority vote and reconstruct according to the phonemes of the less conservative
siblings, leading to many sound changes into the conservative language. Icelandic, for
example, also has an extremely high innovativeness score of 50.46%, despite generally
being regarded as quite conservative.

Finally, the Sankoff algorithm can only reconstruct on the basis of the languages it is given.
While NorthEuraLex has a good coverage for the languages of Northern Eurasia, especially
Uralic, it contains only 4 Dravidian languages, all of them belonging to the same branch
(South Dravidian). With more Dravidian languages weighing in on the reconstruction,
Sankoff would probably perform better and give a more accurate innovativeness score for
Tamiḻ.

In general, however, the innovativeness measures approximately reflect linguistic intuition,
assigning high scores to known “quirky” languages like English (47.28%), French (40.5%)
or Hungarian (47.94%), and lower scores to languages known to be more conservative
within their subfamily, such as Finnish (22.3%), North Karelian (12.46%) or Slovenian
(20.23%).

4.2.6.2 Converting Normalized Frequencies to Belief
As usual, I employ the upper half of a logistic function to derive belief values from the
raw frequency counts. To calculate the transition score τL(s, t) for a language L, I apply
the logistic function to the raw frequency scaled by the language’s innovativeness:

τL(s, t) =
2

1 + e−ν(L)fL(s,t)
− 1 (4.6)

Calculating language-specific scores first has the advantage of providing a “normalized
frequency” for each language. The overall number of sound changes fL(s, t) observed can
vary greatly between languages, since it depends on the number of entries for a language
as well as the number of found cognates sets and, ultimately, the average word length
(languages with longer words yield more sound changes). τL(s, t), on the other hand, lies
within the interval [0, 1] for every language.

To arrive at the general transition score τ(s, t), I then apply the logistic function again to
the sum of the language-specific transition scores:

τ(s, t) =
2

1 + e−0.1
∑

τL(s,t)
− 1 (4.7)

The resulting transition scores reflect our intuition about plausible sound changes quite

67

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

well. The score for /t/ → /d/, for instance, is 0.97, supporting this sound change almost
as much as the identity transition /t/ → /t/ (score 1.0). See Appendix A for a link to the
complete matrix.

4.3 Phase 1: Proto Inventory Reconstruction
Having covered the necessary pre-processing steps performed outside of PSL, I now turn
to the design of the actual PSL model. The first inference phase implements step 3 of the
comparative method: The reconstruction of proto-sounds for the sound correspondences
(cf. section 1.3.1.3). The input observations for this phase are the sound correspondences
collected from the alignments as well as the knowledge about sound classes and plau-
sible sound changes extracted from the sound class hierarchy and the sound transition
matrix. There are two targets to this inference phase: The proto-sound reconstructions
for the individual sound correspondences and the overall phoneme inventory of the proto-
language.

4.3.1 Predicates

Pcor(SoundCorrespondenceID)
“The sound correspondence SoundCorrespondenceID is frequent.”
Pcos(SoundCorrespondenceID, Language, LanguageSound)
“In the sound correspondence SoundCorrespondenceID, the reflex in Language is
LanguageSound.”

These two predicates model the sound correspondences extracted during pre-processing.
The Pcor predicate’s belief value is the frequency prior calculated as described in section
4.2.3. The actual sounds a correspondence is composed of can be accessed via the Pcos
predicate, whose only possible belief value is therefore 1.0. The SoundCorrespondenceID
can in principle be any kind of ID; in SoInEn, however, the actual sound correspondence
string Sound1/.../SoundN (e.g. h/p/p/p) is used as id for user readability.

Psub(Sound, SoundClass)
“Sound is in SoundClass.”

Psub is the first of three predicates representing the sound class hierarchy (but the only one
needed in this inference phase), implementing the subset-or-equals relation. Additionally,
when the first element is a phoneme, atoms are grounded for all possible combinations of
phoneme and sound class, linking sounds to each of their superclasses with belief 1.0 and
to all other classes with belief 0.0. This is necessary for rule pcorToPrecDiffClass. For
proper sound classes, the 0.0-belief relations are not grounded. For instance, the following
ground atoms will be set to 1.0 for /t/:

Psub("t", "t")
Psub("t", "voiceless")
Psub("t", "alveolar")
Psub("t", "stop")

Psub("t", "occlusive")
Psub("t", "obstruent")
Psub("t", "consonant")
Psub("t", "anything")

68

4.3. Phase 1: Proto Inventory Reconstruction 4. SOINEN ARCHITECTURE

generateProtoCandidates (S , C = {C1, . . . , Cn} , k) :
P ← S
C ′ ← {Ci ∈ C | S ⊆ Ci}
i f |C ′| ≥ k :

P ← P ∪ getS imi larSounds ({Ci ∈ C \ C ′ | Ci ∩ S 6= ∅} ,
∩

Ci∈C′ Ci)
re turn P

getS imi larSounds (Cr , B) :
Ps ← ∅
f o r C ′

r in P(Cr) :
Be ← B ∩

∩
Ci∈C′

r
Ci

i f |Be| = 1 :
Ps ← Ps ∪ Be

re turn Ps

Figure 4.13: The algorithm for generating proto-sound candidates for a sound correspondence con-
sisting of sounds S, given the sound classes C.

All other combinations of "t" and a sound class are set to 0.0.

Pchg(SourceSound, TargetSound)
“The sound change from SourceSound to TargetSound is common.”

The belief value of Pchg is the value given in the sound transition matrix described in
section 4.2.6. The higher this value, the more common and plausible is a sound change
between the two arguments.

Prec(SoundCorrespondenceID, ProtoSound)
“The sound correspondence SoundCorrespondenceID evolved from ProtoSound.”

Prec is one of the two target predicates in this phase and models the proto-phoneme
reconstruction for a sound correspondence.

Pinv(Language, Sound)
“Sound is in Language’s phoneme inventory.”

In general, Pinv models the phoneme inventories of all participating languages. For the ob-
served modern languages, Pinv’s sound argument and belief are fixed, but with the proto-
language as first argument, it is the second target predicate of this inference phase, repre-
senting the PSL model’s belief that a certain sound occurred in the proto-inventory.

4.3.2 Ideas
Plausible Prec atoms, i.e. proto-sound candidates for a sound correspondence, are gener-
ated using the algorithm shown in Figure 4.13. As input, the method receives the unique
phonemes S of the sound correspondence, the sound classes C (where each sound class
Ci ∈ C is a set of sounds) and the minimum number of shared sound classes k. By default,
k is set to 1, but it can be raised by the user to only generate unattested proto-sounds that

69

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

share many features with all of the attested sound, e.g. in case noisy data could provide
high support for unsuitable generated proto-sounds.

A set of proto-candidates P minimally consists of the sound correspondence’s members S
themselves. To see whether additional feasible candidates can be found, we consider the
set C ′ of lowest-level sound classes shared by all sounds in S: If C ′ contains less than k
classes, the sounds of the sound correspondence are too dissimilar to generate a reasonable
number of additional candidates. With k = 1, for instance, the correspondence m/t/t has
too few shared sound classes (namely none), while m/d/d has just enough (voiced) to
reach the next step.

If C ′ passes the threshold, the algorithm tries to compose additional candidates from the
base sounds B =

∩
Ci∈C′ Ci in the fully shared classes and the remaining partially shared

classes Cr. For this, it filters the base sounds B for each possible combination of partially
shared classes C ′

r in Cr (as spelled out by the power set P(Cr)), yielding the sounds Be

which are in the classes C ′ as well as C ′
r. If Be contains only a single sound, meaning that

this sound can be completely specified by a combination of sound classes occurring in the
sound correspondence, this sound is added to the set of candidates.

For the sound correspondence m/d/d, for instance, we have C ′ = {voiced}, therefore, B
contains all voiced consonants. Cr then consist of all other sound classes of /m/ and /d/,
so Cr = {bilabial, nasal, alveolar, stop}. Possible subsets of Cr that can extend C ′ to
a full sound specification are {bilabial, nasal}, {bilabial, stop}, {alveolar, nasal} and
{alveolar, stop}, yielding the proto-sound candidates /m/, /b/, /n/ and /d/.

Pinv atoms for the proto-language are inserted for all proto-candidates generated for some
sound correspondence.

4.3.3 Rules

precPrior:
5.0: ~Prec(ID, Proto)
“By default, any reconstruction is assumed to be false.”

This negative prior on proto-sound reconstructions for sound correspondences ensures that
only those reconstructions with sufficient positive evidence are assigned high belief values.
The weight for this prior is very high because of the next two rules, which can provide a
rather large amount of evidence. If the prior weight was lower, they could overpower it
too easily.

pcorToPrecSameClass:
0.25: Pcos(ID, Lang, LangSound) & Psub(Proto, Class) &

Psub(LangSound, Class) & XPrec(ID, Proto) ‐> Prec(ID, Proto)
“If some target sound and the proto-candidate belong to the same sound class, it is more
likely that the candidate is indeed the proto-sound for this sound correspondence.”
pcorToPrecDiffClass:
0.25: Pcos(ID, Lang, LangSound) & Psub(Proto, Class) &

70

4.3. Phase 1: Proto Inventory Reconstruction 4. SOINEN ARCHITECTURE

~Psub(LangSound, Class) & XPrec(ID, Proto) ‐> ~Prec(ID, Proto)
“If some target sound and the proto-candidate belong to different sound classes, it is
less likely that the candidate is indeed the proto-sound for this sound correspondence.”

These two rules implement the idea that a sound does not suddenly become an entirely
unrelated phoneme, but that the target sounds bear some resemblance to their common
ancestor, and that a proto-reconstruction becomes more likely when it shares many features
with its descendants. They also indirectly implement the “majority vote” (cf. section
1.3.1.3): When proto- and target sound are equal, they belong to the exact same sound
classes. The second rule actually shows a direct implementation of negative evidence,
which is possible because the Psub atoms could be fully spelled out due to the number of
phonemes and sound classes being limited to a manageable amount.

pchgPrior:
0.5: Pcos(ID, Lang, LangSound) & Pchg(Proto, LangSound) & XPrec(ID,

Proto) ‐> Prec(ID, Proto)
“If the change from a proto-candidate to one of the target sounds is a common sound
change, it is more likely that the candidate is indeed the proto-sound for this sound
correspondence.”

Here, the values from the previously generated sound transition matrix (cf. section 4.2.6)
are used to support common sound changes.

singleProtoSound:
Prec(ID, +Proto) <= Pcor(ID) .
“A sound correspondence can be derived from at most one proto-sound.”

This arithmetic rule enforces two restrictions at the same time. Primarily it ensures that
there is at most one proto-sound selected (or multiple with low belief) for any sound cor-
respondence, since Pcor(ID) <= 1. Additionally, it takes the overall frequency of the
sound correspondence as encoded in the Pcor atom into account, making reconstruc-
tions for any low frequency sound correspondence less plausible. This sorts out dubi-
ous sound correspondences most likely the result of alignment errors and prevents their
proto-reconstructions from cluttering the inferred proto-sound inventory.

protoSoundPrior:
1.0: ~Pinv("ProtoLang", ProtoSound)
“By default, all sounds are assumed to not have been part of the proto-language’s sound
inventory.”

This rule puts a negative prior on those Pinv atoms that refer to the currently inferred
proto-language, so that the system does not assume the existence of a proto-sound for
which it has no or little evidence.

protoSoundInventory:
2.0: XPinv("ProtoLang", ProtoSound) & Prec(ID, ProtoSound) ‐>

Pinv("ProtoLang", ProtoSound)

71

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

“If a sound has been reconstructed as the ancestor of a sound correspondence, it must
have been in the proto-language’s sound inventory.”

Finally, the Pinv atoms of the proto-language are supported by all ancestral sound recon-
structions for the sound correspondences. The weight is higher than that of the negative
prior since even a reconstruction for a single sound correspondence entails that this sound
must have been part of the proto-sound inventory.

4.4 Phase 2: Context Detection
The second inference phase partially implements step 4 of the comparative method, namely
the detection of possible environments for conditioned sound change (cf. section 1.3.1.4).
Using the sound correspondence n-grams observed in the alignments (cf. section 4.2.4) and
the proto-sound reconstructions for these sound correspondence inferred in the previous
phase, this phase bundles the observed neighbors of each sound correspondence up into a
single sound class context (possibly anything _ anything) in which it occurs, forming the
basis for the conditional sound laws inferred in the final phase.

Before this phase starts, the Pinv atoms with belief < 0.6 as well as all Prec atoms
reconstructing one of these proto-sounds are deleted, and the remaining Pinv and Prec
atoms are fixated.

4.4.1 Predicates

Pdsb(SoundClass, SuperClass)
“SoundClass is the direct subclass of SuperClass.”
Plvl(SoundClass, Level)
“SoundClass is at rank Level in the sound class hierarchy.”

These two predicates define the sound class hierarchy: Pdsb links child classes to their direct
parent classes, while Plvl links each sound class to its numeric level in the hierarchy, as
described in section 4.2.5.

Pccl(SoundCorrespondenceID, SoundClass)
“A likely proto-sound candidate of the sound correspondence SoundCorrespondenceID
is in SoundClass.”

The proto-sound of a sound correspondence SoundCorrespondenceID is assumed to belong
to a sound class SoundClass if there exists a Prec(SoundCorrespondenceID, ProtoSound)
with belief > 0.5 where ProtoSound is in SoundClass. The belief of any Pccl is always 1.0.
It is just a helper atom used in filter clauses.

Pnei(LeftNeighborID, TargetID, RightNeighborID)
“The sound correspondence TargetID can frequently be observed between the sound
correspondences LeftNeighborID and RightNeighborID.”

Pnei atoms carry the sound correspondence n-grams extracted as described in section
4.2.4 with their respective frequency indicators as belief values. In bigrams, the empty

72

4.4. Phase 2: Context Detection 4. SOINEN ARCHITECTURE

neighbor is labeled "unknown". To keep the number of Pnei atoms reasonable, only those
n-grams with a frequency indicator > 0.2 are converted into atoms, and only if the mid-
dle sound correspondence contains at least two different sounds. Sound “changes” where
the proto-sound is retained in all daughter languages will later be considered the default
“fallback” case for instances where no conditioned sound change can be applied (or when
none exists).

Pcxt(LeftProtoContext, TargetID, RightProtoContext)
“The sound correspondence TargetID developed between the proto-sound (classes)
LeftProtoContext and RightProtoContext.”

While the neighbors of Pnei atoms are sound correspondences, the contexts of this phase’s
sole target predicate Pcxt are proto-sounds or sound classes. They encode the site of a
sound change that produced the sound correspondence in question.

4.4.2 Ideas
Populating Pcxt is rather straightforward: For each Pnei(LNei, T, RNei), Pcxt atoms are
inserted for any possible combination of sound classes of plausible (i.e. belief > 0.5) proto-
sound reconstructions for LNei and RNei. For instance, let’s say we have the following
atoms:
Pnei("a/a/a", "d/t/t", "u/i/u") = 0.85
Prec("a/a/a", "a") = 1.0
Prec("u/i/u", "u") = 0.7
Prec("u/i/u", "i") = 0.3
Prec("u/i/u", "y") = 0.0

The only plausible proto-reconstruction for the left neighbor a/a/a is a, and for the right
neighbor u/i/u, it is u. Hence, the following Pcxt atoms will be injected:

Pcxt("a", "d/t/t", "u")
Pcxt("a", "d/t/t", "rounded")
Pcxt("a", "d/t/t", "close")
Pcxt("a", "d/t/t", "back")
Pcxt("a", "d/t/t", "vowel")
Pcxt("a", "d/t/t", "sonorant")
Pcxt("a", "d/t/t", "anything")
Pcxt("open", "d/t/t", "u")

Pcxt("open", "d/t/t", "rounded")
Pcxt("open", "d/t/t", "close")
Pcxt("open", "d/t/t", "back")
Pcxt("open", "d/t/t", "vowel")
Pcxt("open", "d/t/t", "sonorant")
Pcxt("open", "d/t/t", "anything")
etc.

An "unknown" argument in Pnei remains "unknown" in Pcxt. In addition, every sound cor-
respondence PcorID receives a Pcxt("unknown", PcorID, "unknown") in case no plausible
context can be found.

4.4.3 Rules
Speaking more generally, this phase implements the fusion of single sound observations
to sound classes that are just general enough to match all observations. This is where

73

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

anything

vowel

rounded

u …

unrounded

a i …

consonant

stop

p k …

…

−

−

− −

−

− − −

−

−

− − −

−

0: ~

0.02: ~

0.1: ~

0.5: ~

<= 1

u/u/u
+

+

+

+

Figure 4.14: Effects of the context detection rules.

the tiered sound classes from section 4.2.5 come into play. Figure 4.14 shows a simplified
excerpt of the sound class tree that illustrates how the following PSL rules push the
contexts into place without any overt negative evidence.

levelPriorPcxt:
0.5 / 5^(lvl ‐ 1): Plvl(L, "lvl") & XPcxt(L, Trgt, R)

‐> ~Pcxt(L, Trgt, R)
0.5 / 5^(lvl ‐ 1): Plvl(R, "lvl") & XPcxt(L, Trgt, R)

‐> ~Pcxt(L, Trgt, R)
“The more general a context, the less likely it is by default.”

Since there is no explicit negative evidence for n-grams, negative priors are required in-
stead. These get weaker the lower down in the sound class tree we are: As we can see
in Figure 4.14, the strongest negative prior is on the anything class, the second strongest
on vowel and consonant4, and so on, while the leaves, i.e. the “classes” containing only a
single sound, have no negative prior.

This ensures that classes are not propagated up without good reason: When there is equal
evidence for a class and its subclass, the subclass will get a higher belief. For example,
if we have observed only rounded vowels, we would like the system to infer the rounded
class and not vowel, even though all of the observed sounds are also vowels. The priors
are sufficiently low for the first unrounded vowel to provide enough extra vowel evidence
for the system to discard the rounded hypothesis.

singleContext:
1.0: Pcxt(+L, Trgt, +R) <= 1
“A sound correspondence can occur in at most one context.”

This is a lightly weighted rule and not a constraint because it is technically possible for a
sound correspondence to have multiple valid contexts: For example when a sound change

4In fact, there is a stage between anything and vowel/consonant, namely the sonorant/obstruent contrast,
which was left out in the example tree for the sake of simplicity.

74

4.4. Phase 2: Context Detection 4. SOINEN ARCHITECTURE

happened both at the end of words and before consonants. Still, we would like to give the
system some incentive to settle on one context in most cases.

contextObservation:
1.0: Pcxt(+LCls, Trgt, "unknown") >= Pnei(LNei, Trgt, "unknown")

{LCls: Pccl(LNei, LCls)}
1.0: Pcxt("unknown", Trgt, +RCls) >= Pnei("unknown", Trgt, RNei)

{RCls: Pccl(RNei, RCls)}
1.0: Pcxt(+LCls, Trgt, +RCls) >= Pnei(LNei, Trgt, RNei)

{LCls: Pccl(LNei, LCls)} {RCls: Pccl(RNei, RCls)}
“The observation of a sound correspondence n-gram supports one of the matching con-
texts.”

These rules distribute the belief mass of each of the bigram and trigram observations among
all matching contexts. This is illustrated in blue in Figure 4.14: Here, the observation
of the sound correspondence u/u/u next to the target supports the contexts u, rounded,
vowel and anything. Which of these contexts is chosen in the end depends on which sound
classes are supported by the other observations and how these are propagated up by the
other (restrictive) rules.

notSupergroupPcxt:
1.0: Pcxt(LCls, Trgt, R) & Pdsb(LCls, LGrp) ‐> ~Pcxt(LGrp, Trgt, R)
1.0: Pcxt(L, Trgt, RCls) & Pdsb(RCls, RGrp) ‐> ~Pcxt(L, Trgt, RGrp)
“If a more specific context already explains the occurrences of the sound correspondence,
the more general context is less likely.”

When seen without explanation, the rule “when subclass, then not superclass” might seem
counterintuitive: After all, evidence for a subclass such as rounded is also evidence for its
superclass (vowel). However, the formal interpretation of logical entailment does some-
times not correspond to human intuition, leading to naturally formulated PSL rules having
unwanted consequences, as I will now illustrate.

Consider the following example: We have observed rounded and unrounded vowels, so
rounded = 1 and unrounded = 1. The desired context, obviously, is vowel. Now imagine
the rules were phrased positively, i.e. “from subclass follows superclass”:
1.0: Pcxt(LCls, Trgt, R) & Pdsb(LCls, LGrp) ‐> Pcxt(LGrp, Trgt, R)
1.0: Pcxt(L, Trgt, RCls) & Pdsb(RCls, RGrp) ‐> Pcxt(L, Trgt, RGrp)

Since the antecedent, rounded or unrounded, is 1, the consequent, vowel, must also be
1. Now the system considers all three classes equally likely. To prevent this, we have
the singleContext rule, which will correctly select vowel. However, now that vowel =
1, there is pressure to apply the same rule with vowel in the antecedent, since we have
vowel (1) ‐> anything (0), which is logically false and thus maximizes the distance to
satisfaction. The positive rules will therefore lead to anything always being the only
acceptable solution.

With the negative rules, there is no such issue: Here, having rounded = 1 and unrounded
= 1 will set vowel = 0. However, when singleContext comes into play, the belief of both

75

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

rounded and unrounded is lowered, and with it the negative pressure on vowel. Since
vowel also receives the same positive evidence as both rounded and unrounded together
via contextObservation, it will eventually be cheaper for the system to set vowel = 1
and both subclasses to 0. Since 0 ‐> 1 is a true entailment, notSupergroupPcxt poses no
problem for this. On the other side, when there is only evidence for rounded, but not for
unrounded, notSupergroupPcxt prevents the system from choosing vowel over its equally
plausible subclass.

4.5 Phase 3: Sound Law Inference
The final phase, the actual sound law inference, combines the results from the previous
two phases to infer the conditioned and unconditioned sound laws for all target languages,
thereby completing step 4 of the comparative method (cf. section 1.3.1.4). Before starting
this phase, the Pcxt atoms inferred previously are fixated and those with belief < 0.3 are
deleted, since they can be considered rejected by the system and are usually nonsensical,
so they should not have influence on the sound law inference.

4.5.1 Predicates

Plaw(ProtoLanguage, TargetLanguage, ProtoSound, TargetSound,
LeftContext, RightContext)

“There was a sound change ProtoSound → TargetSound | LeftContext _ RightContext
from ProtoLanguage into TargetLanguage.”

The only new predicate in this phase is the open predicate Plaw which represents the
inferred sound laws. Within a single SoInEn inference, the ProtoLanguage argument will
always be the same, which is why it is hard-coded in the rules. At the current state of the
system, it is useless, but since the long-term goal is to run SoInEn on several subfamilies
at once, it has already been included.

The contexts can be any phoneme or sound class, "anything" if one or both sides are
unconditional, or "elsewhere" if the sound law should apply to all contexts not covered
by some conditional sound law. The conditioned Kannaḍa sound change p > h / # _ ,
for instance, would be rendered as the following two atoms:
Plaw("pdrav", "kan", "p", "h", "#", "anything")
Plaw("pdrav", "kan", "p", "p", "elsewhere", "elsewhere")

The unconditioned Telugu law ɭ > l, on the other hand, would only require one atom,
which already covers all possibilities:
Plaw("pdrav", "tel", "ɭ", "l", "anything", "anything")

4.5.2 Ideas
The algorithm for generating Plaw candidates is not particularly complicated, but deeply
nested, which is why it is illustrated in Figure 4.15.

76

4.5. Phase 3: Sound Law Inference 4. SOINEN ARCHITECTURE

generateSoundLawCandidates () :
f o r each PcorID :

C ← {(L, R) | Pcxt(L, PcorID, R) > 0.3}
C ← C ∪ {(LSup, RSup) | L ⊆ LSup, R ⊆ RSup, (L, R) ∈ C}
f o r Proto in {Proto | Prec(PcorID, Proto) > 0.5} :

f o r (Lang, Sound) in PcorID :
i f Proto = Sound :

i n j e c t (Plaw("ProtoLang", Lang, Proto, Sound,
"elsewhere", "elsewhere"))

e l s e :
f o r (L, R) in C :

L ← convert (L)
R ← convert (R)
i n j e c t (Plaw("ProtoLang", Lang, Proto, Sound, L, R))

convert (Context) :
i f Context = "unknown" :

r e turn "anything"
e l s e :

r e turn Context

Figure 4.15: The algorithm for generating sound law candidates given the results of the first two
inference phases.

We consider all proto-sounds reconstructed for a sound correspondence with belief > 0.5.
For each member of the sound correspondence, we check whether it is equal to the proto-
sound: If yes, no change has happened and we insert the previously mentioned default
Plaw atom with "elsewhere" context. Otherwise, we fetch all contexts of this sound
correspondence with belief > 0.3 and inject Plaw candidates for these contexts and for all
contexts that consist of superclasses of these contexts. All "unknown" contexts are replaced
with "anything". The threshold for Pcxt atoms to be considered is comparatively small,
because during inference, we will need as much evidence as possible from Pcxts for different
sound correspondences leading to the same sound changes in order to generalize them up
to a single matching context, similar to how we did it with the Pneis in the previous
phase.

As an example, consider the following atoms:
Prec("h/p/p", "p") = 0.9
Pcxt("#", "h/p/p", "unknown") = 1.0
Pcxt("#", "h/p/p", "vowel") = 0.6
Pcxt("#", "h/p/p", "unrounded") = 0.4
Pcxt("#", "h/p/p", "rounded") = 0.2
Pcxt("unknown", "h/p/p", "vowel") = 0.4

Here, a change took place only in the first language. Hence, conditioned sound law can-
didates will be generated only for this language. Also, the belief of Pcxt("#", "h/p/p",
"rounded") is too low for it to be included in the sound law contexts. Overall, the following
Plaw atoms will be injected:

77

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

Plaw("ProtoLang", "Lang1", "p", "h", "#", "anything")
Plaw("ProtoLang", "Lang1", "p", "h", "anything", "anything")
Plaw("ProtoLang", "Lang1", "p", "h", "#", "vowel")
Plaw("ProtoLang", "Lang1", "p", "h", "#", "sonorant")
Plaw("ProtoLang", "Lang1", "p", "h", "anything", "vowel")
Plaw("ProtoLang", "Lang1", "p", "h", "anything", "sonorant")
Plaw("ProtoLang", "Lang1", "p", "h", "#", "unrounded")
Plaw("ProtoLang", "Lang1", "p", "h", "anything", "unrounded")
Plaw("ProtoLang", "Lang2", "p", "p", "elsewhere", "elsewhere")
Plaw("ProtoLang", "Lang3", "p", "p", "elsewhere", "elsewhere")

4.5.3 Rules

levelPriorPlaw:
0.5 / 5^(lvl ‐ 1): Plvl(L, "lvl") & XPlaw("PLng", TLng, PSnd, TSnd,

L, R) ‐> ~Plaw("PLng", TLng, PSnd, TSnd, L, R)
0.5 / 5^(lvl ‐ 1): Plvl(R, "lvl") & XPlaw("PLng", TLng, PSnd, TSnd,

L, R) ‐> ~Plaw("PLng", TLng, PSnd, TSnd, L, R)
“The more general a context, the less likely it is by default.”

This rule works just like levelPriorPcxt from the previous phase: It provides tiered
negative priors for the sound class hierarchy.

someSoundLawForEveryProto:
Plaw("PLng", TLng, PSnd, +TSnd, +L, +R) >= 1 .
“There must be at least one sound change from a proto-sound into every target lan-
guage.”

Every sound in the proto-language’s phoneme inventory must have some reflex in each
daughter language, which is enforced by this rule. When there is no evidence for any
conditioned sound change, this will promote the "elsewhere" sound law, since it has no
negative prior.

singleSoundlawContext:
Plaw("PLng", TLng, PSnd, TSnd, +L, +R) <= 1 .
“A sound change can only apply in a single context.”

Though technically not true, this rule is required to make PSL settle on one context per
sound law and not assign them all high belief.

elsewhere:
1.0: Plaw("PLng", TLng, PSnd, TSnd1, "elsewhere", "elsewhere")

= 1 ‐ Plaw("PLng", TLng, PSnd, +TSnd2, "anything", "anything")
“There should be exactly one unconditioned sound change.”

The "elsewhere" sound law as a “fallback” only makes sense when there are uncovered
contexts. Hence, it is in direct competition with a sound change from the same proto-
sound having a two-sided "anything" context. For example, when Plaw("pdrav", "kan",

78

4.5. Phase 3: Sound Law Inference 4. SOINEN ARCHITECTURE

"ɻ", "ɭ", "anything", "anything") receives belief 1.0, i.e. the system correctly infers
that Proto-Dravidian /ɻ/ became /ɭ/ everywhere in Kannaḍa, Plaw("pdrav", "kan", "ɻ",
"ɻ", "elsewhere", "elsewhere") is not needed anymore, since all instances of proto /ɻ/
are already covered by the unconditioned sound change to /ɭ/.

contextSupport:
1.0: Pcxt("unknown", ID, RCtxt) ‐ (1 ‐ Prec(ID, PSnd)) <=

Plaw("PLng", TLng, PSnd, +TSnd, +L, +R) {TSnd: Pcos(ID, TLng,
TSnd)} {R: Psub(RCtxt, R)}

1.0: Pcxt(LCtxt, ID, "unknown") ‐ (1 ‐ Prec(ID, PSnd)) <=
Plaw("PLng", TLng, PSnd, +TSnd, +L, +R) {TSnd: Pcos(ID, TLng,
TSnd)} {L: Psub(LCtxt, L)}

1.0: Pcxt(LCtxt, ID, RCtxt) ‐ (1 ‐ Prec(ID, PSnd)) <= Plaw("PLng",
TLng, PSnd, +TSnd, +L, +R) {TSnd: Pcos(ID, TLng, TSnd)} {R:
Psub(RCtxt, R)} {L: Psub(LCtxt, L)}

“That a regular sound correspondence ID with TSnd as the TLng sound, for which PSnd
was reconstructed, occurs between LCtxt and RCtxt indicates a sound change in this or
a superclass context.”

In this rule, the results from the previous two inference phases, proto-sound reconstruc-
tion and context detection, come together to provide support for conditioned sound laws.
Subtracting the negated Prec belief from the Pcxt is a somewhat ad-hoc attempt to let
the certainty of the reconstruction have some influence on the resulting sound laws. Mul-
tiplying the belief values of two atoms is unfortunately not possible in PSL.

Note that TSnd is not actually summed over, since there is only a single TSnd that matches
Pcos(ID, TLng, TSnd) (i.e. that occurs in the sound correspondence ID), but we need the
filter clause to ensure that the sound correspondence actually matches the sound laws, and
only sum variables can be filtered.

notSupergroupPlaw:
1.0: Plaw("PLng", TLng, PSnd, TSnd, LCls, R) & Pdsb(LCls, LGrp) ‐>

Plaw("PLng", TLng, PSnd, TSnd, LGrp, R)
1.0: Plaw("PLng", TLng, PSnd, TSnd, L, RCls) & Pdsb(RCls, RGrp) ‐>

~Plaw("PLng", TLng, PSnd, TSnd, L, RGrp)
“If a more specific context already explains the occurrences of a sound change, the more
general context is less likely.”

This is the sound law variant of notSupergroupPcxt. Again, it serves to make the context
as specific as possible and to keep PSL from overgeneralizing.

noContextOverlap:
1.0: Plaw("PLng", TLng, PSnd, TSnd1, L1, R) & XPlaw("PLng", TLng,

PSnd, TSnd2, L2, R) & (TSnd1 != TSnd2) & (L1 != "elsewhere") &
(L2 != "elsewhere") & Psub(L1, L2) ‐> ~Plaw("PLng", TLng, PSnd,
TSnd2, L2, R)

1.0: Plaw("PLng", TLng, PSnd, TSnd1, L, R1) & XPlaw("PLng", TLng,

79

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

PSnd, TSnd2, L, R2) & (TSnd1 != TSnd2) & (R1 != "elsewhere") &
(R2 != "elsewhere") & Psub(R1, R2) ‐> ~Plaw("PLng", TLng, PSnd,
TSnd2, L, R2)

“A proto-sound cannot become two different target sounds in the same language in
overlapping contexts.”

Finally, this rule ensures that conditioned sound changes for the same proto-sound and
the same target language remain mutually exclusive, in that the same proto-sound cannot
become two different sounds in overlapping contexts. Two contexts overlap when the left
or right side of one sound law is the superclass of the respective side of the other.

80

5 Evaluation

In this chapter, I evaluate SoInEn’s performance by comparing the proto-phoneme re-
constructions and sound laws it infers for the Dravidian and Samoyedic languages in
NorthEuraLex to the gold standard developed in chapter 3. I first introduce the general
evaluation setup and the modifications I had to apply to the gold standard in section 5.1.
Then I explain the different metrics I employ to measure SoInEn’s success in compari-
son to the gold standard in section 5.2. Finally, I present and discuss the results of the
evaluation in section 5.3.

5.1 Setup
To obtain the results presented in this chapter, I performed five consecutive runs of all
three phases of SoInEn on both the Dravidian and Samoyedic data, and calculated the
average of these results to account for any variation. The values were very stable though,
with only minor differences between runs. The evaluation was performed on a machine
with an Intel-Core i7-8750H 2.2 GHz CPU with 4 GB of RAM provided to the JVM,
though they were never completely used over the course of the entire five runs.

While the current published version of NorthEuraLex is 0.9, work on the forthcoming
version 0.92 has progressed quite far already, and it comes with improved transcription
for many languages, notably Dravidian and Samoyedic. Since SoInEn can benefit from
this, I have supplied it with the NorthEuraLex 0.92 transcriptions. In addition, because
the Samoyedic cognates are notoriously hard to detect automatically, I provided SoInEn
with gold standard cognacy annotations that were extracted from Janhunen’s (1977) ety-
mological dictionary by Anna Bródy in the context of the EtInEn project.

5.1.1 Format of the Evaluation Files
In order to be able to evaluate SoInEn’s output against them, the gold standard sound
laws for Dravidian and Samoyedic compiled in chapter 3 need to be stored in a machine-
readable format. Since SoInEn operates on non-cluster targets and contexts only and

81

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

#groups
long iː eː aː oː uː

#inventory
i iː e eː a aː o oː u uː p t̪ t ʈ t ɕ͡ k ...

#soundlaws
//lang proto target left right set comment
kan,tel i e 0 *a with /a/ in next syllable
kan p h # 0
kan,tel pː p 0 long
tam,mal mpː pː 0 0
kan,tel mpː mp 0 0

Figure 5.1: Excerpt from the basic evaluation file for Dravidian, with tab characters explicitly marked
to show the format.

NorthEuraLex’s phonetic transcription of the data differs slightly from what is assumed
in the literature in several places, some of the sound laws have to be refactored to give
SoInEn a chance to actually find them.

The gold standard sound laws I derived can also be useful as a test case for other computa-
tional linguists working on automated sound law inference. Apart from the gold standard
refactored to fit the NorthEuraLex data, I thus also provide a basic version closely match-
ing what I discussed in chapter 3. An excerpt of that file for Dravidian is shown in Figure
5.1 to illustrate the file format.

The gold standard file is separated into three parts: The first (optional) part is introduced
by the line #groups and allows the user to specify “sound classes” apart from those compiled
for SoInEn (cf. section 4.2.5) in the format <group name>, tab, members separated by
whitespaces. Then, after the line #inventory, the proto-phoneme inventory is enumerated,
with all sounds on one line, separated by whitespaces. Finally, the line #soundlaws starts
the actual sound law section, which is written in a tabular format, with the seven columns
specifying the target language(s), the proto-sound, the target sound, the left and right
context, the sound law set (to be explained later), and some comment on the respective
sound law. Empty (“anything”) contexts can be specified by explicitly writing anything
or its shorthand 0, or by leaving the cell empty. A context starting with an asterisk * is
also interpreted as an empty context, but can be used to distinguish it from other empty
contexts in sound correspondence generation (see section 5.1.2). At any point in the file,
a line can be marked as a comment by starting it with //.

The above file, however, cannot be direct input to SoInEn, because it partially operates
on consonant clusters, and because SoInEn only knows short vowels and single consonants
(with a long vowel or geminate consonant being interpreted as sequences of two short
vowels/consonants). The refactoring of the Dravidian cluster rules is not trivial, and some
of the contexts cannot be represented accurately (or at all). Consider, for instance, the
Kannaḍa and Telugu rule pː > p / _ [long]: Since the proto-sound cannot be a geminate,

82

5.1. Setup 5. EVALUATION

kan i ɛ 0 *a with /a/ in next syllable
tel i e 0 *a with /a/ in next syllable
kan p h # 0
kan p ‐ p 0 kan‐pp
kan p ‐ 0 p kan‐pp
tel p ‐ p 0 tel‐pp
tel p ‐ 0 p tel‐pp
tam,mal m ‐ 0 p

Figure 5.2: The sound laws from the file in Figure 5.1, with clusters resolved and adapted to the
NorthEuraLex data.

we could instead have a sound law p > ∅ / p _ [long]. However, SoInEn might end up
deleting the first [p] instead, inferring a sound law p > ∅ / _ p and leaving the [p] before
the long vowel untouched. Hence, according to our gold standard, either of the two should
be fine. This is where the “sets” column of the file format comes into play: When specified,
finding one member of a set is sufficient for fulfilling the gold standard for the whole set.
We can therefore create a set kan‐pp containing both p > ∅ / p _ [long] and p > ∅ /
_ p. One problem remains: The long vowel context cannot be matched by SoInEn. We
could replace it by a single vowel context (which would be incorrect though) or leave it
unspecified.

Finally, the phonetic transcription used in NorthEuraLex is not phonemic, for instance
rendering phonological processes like assimilation or final devoicing applying in individual
languages. There might also be variation in how the same phoneme is rendered in dif-
ferent languages: Kannaḍa /e/, for instance, is only transcribed [e] word-finally, but [ɛ]
elsewhere, corresponding to how it is actually pronounced. The gold standard sound law
i > e therefore has to be rendered i > ɛ for Kannaḍa, since it never applies word-finally.
This becomes more complicated when the sound is rendered differently in several languages
in varying contexts. Short Dravidian /a/, for example, is (in version 0.92!) transcribed
[ə] in non-initial syllables in Tamiḻ and Malayāḷaṁ, [ə] except word-finally in Kannaḍa,
and [ʌ] everywhere in Telugu. Since it is most commonly rendered in a reduced form in
all daughter languages, it could and probably will be reconstructed as [ə] instead of [a],
which I would not consider an error. I therefore decided to add [ə] to the proto-phoneme
inventory for Dravidian.

Figure 5.2 shows the final refactoring of the sound laws from Figure 5.1. The result is
not quite satisfying for the consonant clusters, where crucial distinctive information was
lost due to the restricted format. It is to be expected that SoInEn performs poorly at
detecting these sound laws, since their actual contexts cannot even be rendered as a Plaw
atom. There are similarly difficult cases for Samoyedic: Diphthongs, for instance, are also
considered sequences of two separate vowels inside SoInEn. Rendering the diverse sound
changes of the Samoyedic diphthongs inside the Plaw paradigm is a hopeless endeavor,
and so they were omitted from the final gold standard. The NorthEuraLex transcription
also proved to be problematic for detecting some of the sound laws. Most drastically, the
Enets data did not represent the glottal stop in any way, so all sound laws producing it in

83

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

Enets had to be rewritten as deletions.

In the end, the Dravidian gold standard contains 28 proto-phonemes and 185 sound laws,
while the Samoyedic gold standard contains 22 proto-phonemes and 192 sound laws, ren-
dering them of comparable size. The complete refactored gold standard files can be re-
viewed in Appendix C.

5.1.2 Generating Gold Standard Sound Correspondences
Sound correspondences with their proto-sound reconstructions are not directly specified
in the gold standard, but instead derived from the sound laws. Initially, one default sound
correspondence is created for each sound in the gold standard proto-inventory from the
unconditioned sound laws, with remaining gaps filled in by the proto-sound itself. Then,
one sound correspondence is created for each proto-sound and distinct context in which
a sound law applies to this proto-sound, with the gaps filled in from the default sound
correspondence created previously.

The sound laws from Figure 5.2, for example, would first yield the default sound correspon-
dences i/i/i/i and i/i/ɛ/e (in the starred “anything” context *a) for proto *[i], p/p/p/p for
*[p] and m/m/m/m for *[m]. Then, the conditioned sound laws are applied to additionally
derive the regular sound correspondences p/p/h/p (word-initially) and p/p/-/- (before or
after *[p]) for *[p] as well as -/-/m/m (before *[p]) for *[m].

As we can see, the starred “anything” contexts are treated as different than plain anything,
making it possible to create several sound correspondences for the same context. This is
useful, for instance, when a sound law applies in a context that is not directly specifiable
as a single adjacent sound, but will still generate a distinct sound correspondence, as for
the Dravidian vowel changes when there is short *[a] in the following syllable: The context
itself cannot be specified, but there will be two different sound correspondences for each
of the affected proto-vowels (like i/i/ɛ/e and i/i/i/i for *[i]), one in the context of short
*[a] in the following syllable and one occurring elsewhere.

5.2 Method
In this chapter, I only present and discuss the evaluation results of phase 1 (proto-inventory
reconstruction) and 3 (sound law inference). I omit the evaluation of phase 2 (context de-
tection) for two reasons: First, in contrast to proto-sound reconstructions and sound laws,
contextual occurrences of sound correspondences would not be considered an outcome
of the comparative method by a historical linguist. The Pcxt atoms in SoInEn merely
function as aggregators of information, as an intermediate step between sound correspon-
dences, reconstructions and sound laws. Second, Pcxt is particularly hard to reasonably
evaluate, since both the actually found sound correspondences and contexts might deviate
from what is demanded in the gold standard, leading to a combinatory problem.

Consider, for instance, the extremely regular Kannaḍa sound law ʋ > b / # _ which
creates the sound correspondence ʋ/ʋ/b/ʋ for the four Dravidian languages. Kannaḍa
[b], however, can also be observed where some of the other have [ʋ] inside a word in the

84

5.2. Method 5. EVALUATION

NorthEuraLex data, so instead of Pcxt(#, ʋ/ʋ/b/ʋ, anything), the model generates and
assigns high belief to e.g. Pcxt(anything, ʋ/ʋ/b/ʋ, sonorant), which is also an acceptable
context for the sound correspondence ʋ/ʋ/b/ʋ. On the other side, we have, for instance,
the Tamiḻ sound law ɡ > ɣ / V _ V, which should yield the atom Pcxt(vowel, ɣ/ɡ/ɡ/ɡ,
vowel). However, ɣ/ɡ/ɡ/ɡ is observed so rarely that no Pcxt atom is generated for it at all,
which is a general problem with those sound laws applying in less frequent contexts. Also,
*[ɡ] is sometimes rendered [k] in one of the other languages, yielding sound correspondences
like ɣ/ɡ/ɡ/k, ɣ/ɡ/k/k or ɣ/k/k/k. The latter is actually frequent enough to receive a
Pcxt atom, namely Pcxt(vowel, ɣ/k/k/k, unknown), which should in some way count for
the gold standard Pcxt(vowel, ɣ/ɡ/ɡ/ɡ, vowel) because it correctly implies that Tamiḻ
develops [ɣ] next to a vowel.

Both loosely matching context and sound correspondence, however, is extremely difficult
and probably impossible to do automatically with reasonable results. We would not,
for instance, want something like Pcxt(unknown, p/p/b/p, anything) to count for the
gold standard Pcxt(#, ʋ/ʋ/b/ʋ, anything), even though the distance between the two
is similar to that between Pcxt(vowel, ɣ/k/k/k, unknown) and Pcxt(vowel, ɣ/ɡ/ɡ/ɡ,
vowel). Since Pcxt atoms are not targets according to the comparative method anyway, I
have decided not to evaluate them.

5.2.1 General Measures
For each of the remaining target predicates (Pinv, Prec and Plaw), I calculate both pre-
cision p and recall r during the phase in which they are introduced. However, “pure”
precision and recall are not so meaningful when it comes to PSL atoms, since they do
not incorporate the atoms’ belief values: If all gold standard atoms were generated, but
assigned belief 0.0 by the model, the recall would amount to 100%, though we would ac-
tually like it to be 0% since a 0.0 belief atom is equivalent to the non-existence of that
atom. Similarly, if our gold standard contained 10 atoms, which were all generated and
assigned belief 1.0, but the model also generated 100 garbage atoms with belief 0.0, the
precision would amount to only 9%, even though the model correctly distinguished the
gold standard from the undesirable atoms. I therefore normalize the true positive (nt) and
false positive counts (nf) by the average true positive (bt) and false positive belief (bf)
and calculate normalized precision p′ and recall r′ as follows:

p′ =
bt · nt

bt · nt + bf · nf
(5.1)

r′ = bt · r (5.2)

In this way, the lower an atom’s belief, the more it is counted like a negative, which reflects
the semantics of belief values.

In addition, the average belief values of true positives and false positives are also provided
explicitly as an indicator of how well the model distinguishes between “good” and “bad”
ideas. However, it is often the case that much more “bad” ideas are generated than “good”
ones, which makes the false positive belief less representative. There are, for instance, 69

85

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

DRAViDiAN SAMOYEDiC
Target/Total Atoms Runtime Target/Total Atoms Runtime

Phase 1 2,992/33,306 7.193 sec 2,232/22,884 5.859 sec
Phase 2 7,376/48,486 6.362 sec 731/22,204 2.317 sec
Phase 3 379/34,781 6.352 sec 123/21,078 2.322 sec

Table 5.1: General performance of SoInEn in terms of generated atoms and runtime for the three
different inference phases.

Prec atoms in the Dravidian gold standard, not all of which are actually found, and almost
2800 additional Prec atoms generated that are not in the gold standard. Since by design,
SoInEn can only assign a small fraction of these 2800 atoms high belief, the average false
positive belief will always be low, even though there could be 100 “bad” atoms with 1.0
belief.

To account for this, I also calculate the average belief of the n highest rated false positives,
where n is the number of generated gold standard atoms. So if, for example, 40 gold
standard Prec atoms are found during evaluation, the 40 non-gold standard atoms with
the highest belief are picked and their average belief is calculated to get a better idea of
whether the gold standard atoms are actually higher rated than the false positives.

5.2.2 Loose Context Matching
The issue of alternative acceptable contexts that made Pcxt evaluation difficult also per-
sists for Plaw atoms. To account for this, I evaluate all conditioned Plaws twice: First,
only those Plaw atoms exactly matching the gold standard contexts are counted. Then, for
a loosely matching evaluation, all Plaw atoms whose contexts are equal to, a subclass of, or
a superclass of the gold standard context are considered, and the one with highest belief
is picked as the one matching the gold standard. For the gold standard atom Plaw(pdrav,
kan, p, h, #, anything), for example, Plaw(pdrav, kan, p, h, anything, anything),
Plaw(pdrav, kan, p, h, #, vowel) or Plaw(pdrav, kan, p, h, #, alveolar) would also
be accepted as loosely matching the required gold standard Plaw.

5.3 Results and Discussion
In general, SoInEn is better able to find useful patterns in the Dravidian than in the
Samoyedic data, as evidenced by the much higher number of generated (target) atoms
shown in Table 5.1 despite the similarly large gold standard. This imbalance is especially
strong when it comes to context detection, where there are ten times more target atoms
generated for Dravidian than for Samoyedic, indicating that SoInEn has trouble deriving
regular conditional occurrences of sound correspondences from the Samoyedic input data.
The lack of context propagates into sound law inference, where Dravidian spawns thrice as
many target atoms as Samoyedic, which ends up having less candidate atoms than sound
laws in its gold standard. I investigate the quality of the produced target atoms of phases
1 and 3 in more detail in the following sections.

86

5.3. Results and Discussion 5. EVALUATION

DRAViDiAN SAMOYEDiC
Pinv Prec Pinv Prec

Precision 38.89% 1.59% 42.97% 0.90%
Norm. Precision 83.99% 29.08% 75.91% 16.58%

Recall 100.00% 62.70% 91.67% 27.22%
Norm. Recall 81.21% 42.55% 53.54% 15.21%

Recall* 97.89% 73.68%
Norm. Recall* 66.43% 41.18%

Found GS Belief 0.812 0.679 0.584 0.559
Non-GS Belief 0.099 0.027 0.140 0.025

Top n Non-GS Belief 0.155 0.896 0.185 0.863
Alt. Rec. Belief 0.071 0.064

Table 5.2: Evaluation results of phase 1. “(Norm.) Recall*” refers to the recall when only GS proto-
reconstructions for sound correspondences actually occurring in the data are required. “Alt. Rec. Belief”
is the average belief of Prec atoms encoding non-GS reconstructions for GS sound correspondences.

Since it has fewer atoms to optimize for Samoyedic, SoInEn’s inference runs considerably
faster on Samoyedic than on Dravidian, though it is quite fast on both families considering
the high complexity of the inference problem.

5.3.1 Phase 1: Proto Inventory Reconstruction
The evaluation results for Pinv and Prec1, the target atoms for SoInEn’s inference phase
1, are summarized in Table 5.2.

Proto inventory reconstruction works quite well for Dravidian, as evidenced by the high
normalized precision and recall and the distinctive belief values for GS and non-GS Pinv
atoms. It generates all 28 gold standard proto-phonemes as candidates and assigns high
belief to all except [t], [d], [ɭ] and [ɲ]. This is to be expected for [t] and [d], since they
have almost no reflexes in the daughter languages, and for [ɲ] which was rare already in
Proto-Dravidian and lost in Kannaḍa and Telugu. [t͡ʃ] and [d͡ʒ] are assigned belief values
around 0.6 and 0.5, respectively, so that [d͡ʒ] is always and [t͡ʃ] sometimes deleted before
the next phase because their belief is too low. SoInEn falsely assigns high (> 0.6) belief
to [r], [s] and [h], which is acceptable, because [r] occurs in all daughter languages and
is the regular reflex of the missing [t], and [s] and [h] are both common reflexes of the
often-missing [t͡ʃ] as well as frequent in loanwords.

For Samoyedic, normalized precision and recall as well as the average GS belief is much
lower. While 22 of 24 gold standard atoms are generated, SoInEn assigns low belief to
many of them. It performs especially poor on the vowels, where it only manages to
reconstruct [i], [e] and [o], plus [ɑ] instead of GS [ɒ], with high belief, assigning beliefs of
< 0.4 to the other 7 GS vowels. It also fails to assign high belief to the unstable glides [w]

1As a convention, when citing sound correspondences in this the following section, the order of sounds will
be Tamiḻ/Malayāḷaṁ/Kannaḍa/Telugu for Dravidian, and Nganasan/Enets/Nenets/Selkup for Samoyedic.

87

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

and [j], and [ŋ], instead reconstructing [ɡ] (but not [b] or [d]) and [ʎ] (a common rendition
of palatalized [l] in NorthEuraLex) as having been part of the Samoyedic proto-phoneme
inventory. As to be expected, [ʈ͡ʂ] is not even generated as a candidate.

The actual proto-phoneme reconstruction for sound correspondences, represented by the
Prec atoms, seems to perform poorly for both language families. Precision, both raw and
normalized, is quite low, since many Prec atoms not derivable from the gold standard
sound laws are generated and assigned high belief. When comparing the found GS atoms
to the same number of top-rated non-GS atoms, the model even seems to prefer the non-
GS atoms (“Top n Non-GS Belief”). Recall is rather low as well. However, this is mainly
because many of the sound correspondences for which Prec specifies the proto-phonemes
are not even found in the data: When requiring only Precs for those sound correspondences
for which SoInEn has introduced a Pcor atom, recall improves considerably, and SoInEn
only fails to generate those GS Prec atoms where the proto-sound has not survived in any
of the descendant lexemes. Also, the average belief of alternative (non-GS) proto-phoneme
reconstructions for these sound correspondences is extremely low, showing that SoInEn
is indeed able to accurately distinguish good from bad proto-phoneme reconstructions
when presented with a sound correspondence. This indicates that the issue is not the
reconstruction process itself, but rather a combination of sparse data and poor sound
correspondence detection.

Indeed, when inspecting the missing GS atoms, it turns out that many of the involved
sound correspondences only occur in very specific contexts, making them extremely rare
to observe. Samoyedic, for instance, lacks almost all of the sound correspondences where
a consonant has been deleted2 syllable-finally in Enets, such as b/-/p/p, ʔ/-/ʔ/k, s/-
/s/s or r/-/r/r (with the exception of ʔ/-/ʔ/t). Since consonant clusters, especially of
obstruents, are uncommon in Samoyedic, these sound correspondences cannot be observed
very frequently (if at all), and are probably interpreted as noise by SoInEn.

This issue is amplified by the general data sparsity, especially for Samoyedic, for which
there are only 536 cognate sets comprising more than one language in NorthEuraLex, even
with the gold standard cognacy annotation. 415 (or 77.43%) of these contain lexical items
from only 2 languages, 108 (or 20.15%) from 3 languages, and only 13 (or 2.43%) have
representatives for all 4 languages. It is virtually impossible to find several occurrences
of 73 gold standard sound correspondences among these few cognate sets. For Dravidian,
which also has 73 gold standard sound correspondences, the data coverage is a little better,
which is also reflected in the higher recall: Of 705 total cognate sets, 470 (or 66.67%) have
data for only 2 languages, 163 (or 23.12%) for 3 languages, and 72 (or 10.21%) have full
coverage for all 4 languages. Not only are there more cognate sets overall in the Dravidian
data, they are also larger, providing clearer evidence for sound correspondences.

What further contributes to the bad sound correspondence detection is the quality of
the automated multiple sequence alignments, the difficulties with which I have already
discussed in section 4.2.2. The algorithm usually functions well on the Dravidian data,
because the lexical items within one cognate set are often extremely similar to each other.

2…or turned into a glottal stop, which is not represented in the NorthEuraLex data, so it also looks like
deletion there.

88

5.3. Results and Discussion 5. EVALUATION

nio biːʔ – – b i i ʔ bɐc͡çedʲɐ b ɐ c͡ç e – d ʲ ɐ
enf biu b i u – – – bʲedɨ b – ʲ e – d – ɨ
yrk juʔ j – u – – ʔ jindʔ j – – i n d – ʔ
sel køt k – ø – – t kæjɨ – – k æ – – j ɨ

Figure 5.3: Faulty alignment for the Nganasan (nio), Enets (enf), Nenets (yrk) and Selkup (sel) words
for ‘ten’ (left) and ‘breath’ (right) (Dellert and Jäger 2017).

It shows severe difficulties with aligning some of the more obscure Samoyedic cognate sets,
which prevents detection of especially the more unusual sound correspondences. Consider,
for instance, the alignments in Figure 5.3 produced for 2 of the only 13 full cognate sets
in the Samoyedic data: They both properly reflect the various sound changes that apply
to Proto-Samoyedic *[w], which became [b] anywhere in Nganasan, [b] word-initially in
Enets, [j] before front vowels in Nenets and [k] word-initially in Selkup. However, since
the alignment algorithm fails to correctly align the initial consonants in both cases, they
do not contribute any evidence for the sound correspondence b/b/j/k at all.

The sound correspondence b/b/j/k exemplifies an additional problem that is caused by
the evaluation method: Since the gold standard only explicitly lists the proto-phoneme
inventory and the sound laws, the gold standard sound correspondences with their recon-
structions are indirectly derived via the procedure described in section 5.1.2. Based on
the gold standard sound laws for Samoyedic, this method demands a Prec(b/b/w/k, w)
(word-initially) and a Prec(b/w/j/w, w) (before front vowels), but it does not merge these
two into a Prec(b/b/j/k, w) (word-initially before front vowels). Proto reconstructions
for the sound correspondence b/b/j/k will therefore always be counted as non-GS atoms,
even though they are actually desirable.

Finally, some of the sound correspondences have GS proto-phoneme reconstructions that
SoInEn simply cannot derive with the PSL rules it was given for proto-reconstruction, for
instance *[d] for Dravidian r/r/r/ɽ and ɳ/n̪/d̪/ɖ, *[ɯ] for Samoyedic i/i/i/i, or *[ʈ͡ʂ] for
Samoyedic ð/d/d/t and s/t/t/t, because the desired proto-phoneme is in some sound class
that it shares with none of the phonemes participating in the respective sound correspon-
dence.

Overall, given the sparse input data and often very noisy alignments, SoInEn’s proto-
reconstruction is much better than it looks by the raw numbers. For those sound corre-
spondences that actually can be derived from the data, it usually comes up with sensible
proto-phoneme reconstructions, and assigns low belief to the false alternatives. For Dravid-
ian, proto-reconstructions works well enough to derive almost the complete gold standard
proto-phoneme inventory. For Samoyedic, the reconstructed consonant inventory is also
rather close to the gold standard, while the recall for its extremely unstable vowels, having
undergone major changes in all daughter languages, is quite low.

5.3.2 Phase 3: Sound Law Inference
The results for the sound laws inferred in phase 3, the most difficult targets of SoInEn due
to their high dependency on previous results, are summarized in Table 5.3.

89

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

DRAViDiAN
Plaw Plaw+ ID Plaw NID Plaw NID Plaw+

Precision 23.58% 25.93% 75.27% 6.37% 8.50%
Norm. Precision 50.14% 61.28% 77.77% 4.18% 33.48%

Recall 47.46% 49.95% 79.55% 18.35% 23.09%
Norm. Recall 38.24% 46.51% 77.88% 2.28% 18.05%

Recall* 66.52% 70.32% 29.19% 36.86%
Norm. Recall* 53.60% 65.48% 3.63% 28.81%

Found GS Belief 0.806 0.931 0.979 0.125 0.782
Non-GS Belief 0.247 0.206 0.852 0.194 0.144

Top n Non-GS Belief 0.781 0.588 0.852 1.000 0.972

SAMOYEDiC
Plaw Plaw+ ID Plaw NID Plaw NID Plaw+

Precision 37.87% 42.95% 80.99% 1.56% 10.42%
Norm. Precision 59.50% 63.51% 80.52% 0.00% 15.35%

Recall 23.44% 26.35% 69.84% 0.78% 5.12%
Norm. Recall 22.25% 23.75% 67.82% 0.00% 2.23%

Recall* 42.86% 48.19% 1.69% 11.19%
Norm. Recall* 40.69% 43.43% 0.00% 4.88%

Found GS Belief 0.949 0.901 0.971 0.000 0.438
Non-GS Belief 0.395 0.391 1.000 0.296 0.280

Top n Non-GS Belief 0.647 0.520 1.000 1.000 1.000

Table 5.3: Evaluation results of phase 3. “(Norm.) Recall*” refers to the recall when only GS sound
laws for proto-phonemes successfully reconstructed in phase 1 are required. Plaw+ are loosely matched
atoms. ID refers to identity sound laws (with “elsewhere” context), NID (non-identity) to actual sound
changes.

Considering the noisy input data and mediocre results of the previous phase, the relatively
high precision of raw Plaw for both language families seems striking. As expected, given the
difficulties faced in phase 1, recall is much higher for Dravidian than for Samoyedic, even
when only requiring the sound laws for proto-phonemes previously reconstructed (“(Norm.)
Recall*”). At least for Dravidian though, more than a third of the gold standard sound
laws are found despite the poor input. However, the vast majority of these are identity
sound laws (where the proto-sound does not change) with “elsewhere” contexts, i.e. the
fallback default atoms that generally receive high belief by design when no conflicting
unconditioned sound law is detected (ID Plaw). Real sound changes (NID Plaw) are only
rarely found, and virtually never assigned high belief with the exact gold standard contexts.
Also, there are always sound laws detected with very high belief that are not in the gold
standard at all (“Top n Non-GS Belief”).

90

5.3. Results and Discussion 5. EVALUATION

5.3.2.1 Correctly Detected Sound Changes
For Dravidian, SoInEn detects most of the more frequently occuring sound changes, though
usually assigns them more specific contexts than they have in the gold standard, probably
due to their still limited number of occurrences. Examples of this are:

• Tamiḻ d̪ > ð / V _ [close], belief 0.639 (GS: V _)
• Kannaḍa p > h / # _ V, belief 1.0 (GS: # _)
• Kannaḍa ʋ > b / _ [sonorant], belief 1.0 (GS: # _)
• Kannaḍa ɻ > ɭ / V _ [close], belief 0.558 (GS: anywhere)
• Telugu ɳ > n̪ / [sonorant] _ [sonorant], belief 1.0 (GS: anywhere)
• Telugu ɻ > ɖ / [unrounded] _ , belief 0.567 (GS: anywhere)

Most of these inferred contexts reflect Dravidian phonotactics: Since there are no con-
sonant clusters except word-medial nasal+obstruent, SoInEn correctly detects that many
of these sound changes only take place next to vowels (or sonorants, including adjacent
nasals and approximants). Sometimes, as in the case of the Kannaḍa and Telugu laws for
*[ɻ], the sound correspondences are only found next to a rather specific class of vowels due
to their general infrequency. For the Kannaḍa sound law ʋ > b, SoInEn also overspecifies
the right context, but overgeneralizes the left one. Looking at the evidence it has for this,
we can see that there are two alignments where Kannaḍa [b] is aligned with [ʋ] in the
other languages word-medially: Kannaḍa [kɔbːu] with Telugu [kroʋːu] ‘fat’ (cognacy to
Tamiḻ [koɻʉpːʉ] and Malayāḷaṁ [koɻupːɨ̆] not detected), and Kannaḍa [ɕɪlʊbe] with Tamiḻ
[t͡ʃilʉʋaɪ] and Telugu [si̪luʋʌ] ‘cross’. While the latter is a loanword from Syriac šlibo
(Kittel 1894), the Kannaḍa cluster [rʋ] regularly becomes [bː] (Andronov 2003, p. 56), a
sound change that was not included in the gold standard due to its limited occurrence
and because it requires the cluster [rʋ] to arise via several other sound changes in the first
place. The alternative contexts SoInEn infers for the Dravidian gold standard sound laws
therefore make sense overall.

For Samoyedic, SoInEn unfortunately only detects three of the gold standard sound
changes (plus four more to which it assigns 0 belief), namely:

• Nganasan p > h / # _ V, belief 0.865 (GS: _ V)
• Nenets k > x / # _ , belief 1.0 (GS: _ [back])
• Selkup k > q / # _ , belief 1.0 (GS: _ [open, close-mid])

For all three, there is a lot of evidence in the data, but almost all of the occurrences
are at the beginning of a word. The Nganasan sound change p > h, for instance, occurs
word-initially in 17 cognate sets, and word-medially only in one, namely the one for the
concept ‘fur’ (Nganasan [kuhu] and Selkup [qopɨ]). The sound changes from *[k] suffer
from a similar imbalance. In addition, SoInEn is unable to detect their right contexts
because the sound correspondences to be found there are so diverse, to the extent that the
13 (partial) instances of word-initial k/k/x/q in the data occur left of 12 distinct vowel
correspondences (e.g. o/ɑ/?/æ, i/i/ɨ/?, u/u/u/?, or ə/?/æ/ø). Given that only four proto-
vowels could be reconstructed with high belief, it is clear that not all of these 12 different

91

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

vowel correspondence are frequent enough to have a proto-sound assigned. In fact, only
one of them participates in a Prec with a belief higher than 0.5, the threshold for being
included in Pcxt candidate generation. And even if they all had proto-sound reconstruc-
tions, some of the sound correspondences would be interpreted by SoInEn to have derived
from non-back vowels, because all of the reflexes are non-back, as in Nganasan [kɐm],
Nenets [xeːmʔ], Selkup [kæm] ‘blood’ (from Proto-Samoyedic *kem̮, Janhunen 1977). The
contextual evidence is therefore just too diverse for SoInEn to derive the correct contexts
for the above sound laws.

5.3.2.2 Missing Sound Changes
When a proto-sound was not reconstructed during phase 1, SoInEn will never assume any
sound law for it. This accounts for many of the missing gold standard sound laws in both
families, especially most of the vowel changes in Samoyedic, as evidenced by the sharp
increase of recall when demanding only sound laws for proto-sounds previously inferred
(“(Norm.) Recall*”). I will therefore only discuss the sound laws missing for correctly
detected proto-phonemes.

We have already seen that the three Samoyedic sound laws detected by SoInEn all applied
word-initially. Indeed, since Samoyedic consonants are extremely stable at the beginning
of a word, the only word-initial sound change SoInEn missed is the palatalization of [k]
before front vowels, for which the proto-reconstruction is difficult to get right since the
sound change applies in all four languages. It is also so rare in the data that the only
sound correspondence pertaining to *[k]-palatalization is s/s/s/q, which is traced back to
proto *[s] with a belief of only < 0.3. So while the word-initial sound laws are reasonably
well detected, SoInEn does not find any of the word-medial changes, namely the ones
applying intervocally and the consonant deletions (Enets) or glottal stop replacements
(Nganasan, Nenets) in coda position. As already discussed in the previous section, these
occur in such specific contexts that SoInEn is even unable to detect the respective sound
correspondences. All Prec atoms containing Nganasan or Nenets [ʔ], for instance, receive
a belief of < 0.01, rendering the generation of any such sound change impossible.

For Dravidian, the reasons for missing gold standard sound changes are a little different.
First of all, as already mentioned in section 5.1.1, many of the Dravidian sound laws are
difficult to model in the restricted syntax of SoInEn’s Plaw atoms. Most of them apply to
geminates or nasal+obstruent clusters, a context that cannot be captured properly with
Plaws that can only apply to a single sound with one neighboring sound or sound class on
each side. Also, these contexts are again very specific and will likely not all occur in the
data. As a consequence, none of the consonant cluster sound laws could be identified by
SoInEn. Then there are also several vowel changes that are conditioned on the vowel of
the following syllable, which cannot even be approximately modeled as a Plaw. They are
actually frequent enough for SoInEn to detect some of them, namely Malayāḷaṁ o > u /
[occlusive] _ [occlusive], Kannaḍa i > ɛ / _ [voiced] and Telugu i > e, as well as Tamiḻ
u > o / C _ for GS o > u and Telugu o > u / _ C for GS u > o (all five actually applying
with *[a] in following syllable). Still, the latter two are technically not correct, and several
more of these are still missing.

92

5.3. Results and Discussion 5. EVALUATION

Finally, Dravidian *[k]-palatalization suffers from the same problem as the respective
Samoyedic sound laws: The change k > t͡ɕ|t͡ʃ / # _ [front] happens in all four languages
except Kannaḍa. In addition, NorthEuraLex contains only one cognate set in which it
applies that has a Kannaḍa lexeme, namely Malayāḷaṁ [t͡ɕeʋi], Kannaḍa [kɪʋi], Telugu
[t͡ɕeʋi] ‘ear’, which is not enough evidence for giving any reconstruction for t͡ʃ/t͡ɕ/k/t͡ɕ a
high belief (*[t͡ʃ] receives belief 0.013, *[k] plain 0.0).

5.3.2.3 Falsely Detected Sound Changes
As indicated by the “Top n Non-GS Belief”, SoInEn detects several false sound laws with
very high belief. Note that because the “Top n Non-GS Belief” is supposed to provide a
comparable value to the “Found GS Belief”, the number of atoms averaged for it correspond
to the number of found gold standard atoms, which often is quite low, especially for
Samoyedic. Therefore, while it seems extreme that the “Top n Non-GS Belief” is 1.0
for Samoyedic NID Plaw, remember that this is only the average belief of the 1 (exactly
matched) and 6 (loosely matched) highest rated non-GS atom(s).

For the identity sound laws, the false positives are those referring to the falsely inferred
proto-sounds, as well as those for proto-sounds that underwent unconditioned sound
changes in the gold standard but were detected in more specific contexts by SoInEn,
making the fallback identity law necessary. Since “elsewhere” Plaws get high belief by
default, the high average non-GS belief for false identity sound laws is not particularly
surprising.

There are several false non-identity sound changes inferred by SoInEn for which there is
only little direct evidence in the data, which however gets blown up by combining it with
other compatible partial alignments. We find, for instance, a Tamiḻ sound law h > ɣ /
_ [sonorant]. [h] is not in the gold standard inventory of Proto-Dravidian, and indeed,
the only actual evidence for this are loanwords deriving from Sanskrit guhā ‘cave’ (cf.
Monier-Williams 1899), namely Tamiḻ [kuɣaɪ], Malayāḷaṁ [ɡuɦa], Kannaḍa [ɡʊhe] and
Telugu [ɡuhʌ]. However, there are many other alignments of Malayāḷaṁ [ɦ] with Kannaḍa
and Telugu [h], not containing a Tamiḻ cognate, which are counted as evidence for a
regular sound correspondence ɣ/ɦ/h/h. To prevent something like this from happening,
the Gapped Frequency Trie performing these combinations (cf. section 4.2.3.1) is only
allowed to merge two (partial) sound correspondences when they share at least two different
symbols, but this condition is unfortunately satisfied by the [ɦ]∼[h] contrast. In the same
way, evidence is “generated” for several other false sound laws, for example:

• Tamiḻ s > w / _ [sonorant] via one observation of w/s/s/s̪ combined with several
observations of ?/s/s/s̪

• Telugu i > ʌ / C _ C via one observation of i/i/ɪ/ʌ combined with several observa-
tions of i/i/ɪ/?

• Nganasan ɡ > k / # _ and Selkup ɡ > q / # _ via one observation of k/ɡ/?/q
combined with several observations of ?/?/ɡ/q and k/?/?/q (more likely an instance
of k > ɡ in Enets and Nenets)

Other non-GS sound laws with high belief are actually justified in light of the data. When

93

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

discussing the difficulties with Prec evaluation in section 5.2, I already mentioned that the
Dravidian gold standard sound correspondence ɣ/ɡ/ɡ/ɡ is sometimes found as ɣ/k/k/k.
This makes SoInEn infer a sound law k > ɣ / V _ for Tamiḻ instead of GS ɡ > ɣ / V _
with belief 1.0, which is quite good given the noisy input data. Similarly, it finds Nganasan
t > c͡ç / # _ and Nenets n > ɲ / _ , which can both be counted toward GS ∅ > ʲ /
C _ [front] given that [c͡ç] and [ɲ] are NorthEuraLex transcriptions of underlying /tʲ/ and
/nʲ/, respectively. Then there are regular patterns in the data that are not part of the gold
standard: There are several Tamiḻ words for the form CVl, for instance, that correspond
to CVllu in the other Dravidian languages (e.g. Tamiḻ [ʋil], Malayāḷaṁ [ʋillɨ̆], Kannaḍa
[bɪllu], Telugu [ʋillu] ‘bow’), from which SoInEn deduces a Tamiḻ sound change l > ∅ /
[sonorant] _ [sonorant]. Also, since the data is not loanword-annotated, SoInEn captures
some loanword-specific phonetic transformations, for instance Tamiḻ s > t͡ʃ / # _ V, which
can be observed in e.g. [t͡ʃuːrijən] from Sanskrit sūrya ‘sun’ (cf. Monier-Williams 1899) or
[t͡ʃeptəmbəɾ] from English September.

Overall, the explanations SoInEn gives for the high belief non-GS sound laws it inferred are
quite comprehensible, and some of them are actually justified. Many of the false positives
are owed to the still rather generous isMergeable condition of the Gapped Frequency
Trie’s mergeing algorithm, which should be reworked for future versions.

94

6 Conclusion and Outlook

In this thesis, I have presented SoInEn, a PSL model for sound law inference. I aimed to
reproduce the reasoning steps applied in the comparative method in first-order logic rules
in order to fully automate it. In the end, not all parts of the comparative method could be
performed inside PSL, and the inference had to be split into three distinct phases. This
shows the high complexity of the task and indicates that computational methods will not
reach the accuracy of human linguists’ work very soon.

Still, given that SoInEn could not operate under the best circumstances (see the fol-
lowing section), the results are quite acceptable. It correctly detected most of the Dra-
vidian proto-phoneme inventory and found several important sound laws for both Dra-
vidian and Samoyedic. As expected, the Samoyedic vowel changes posed a challenge
for proto-phoneme reconstruction, leading SoInEn to only work reasonably well on the
Proto-Samoyedic consonants. Unfortunately, it missed almost all of the more specific or
infrequent sound changes in both language families, and had trouble detecting the correct
contexts for conditioned sound laws.

6.1 Future Work
These results highlight the need for several more or less immediate improvements to
SoInEn. The Dravidian data in particular contains many loanwords, none of which are
annotated as such. While older loanwords have often participated in many of the regu-
lar sound changes, the more recent ones, especially those with foreign phonotactics, can
easily set even a robust sound law inference model on the wrong track when appearing in
larger numbers. The input for automated sound law inference should therefore ideally be
loanword annotated.

Also regarding the input data, it turns out that rich phonological transcription as in
NorthEuraLex can be both a blessing (for getting a precise idea of how a word is pro-
nounced) and a curse (for obtaining reasonable sound laws). Many of both the inferred
and missing sound laws referred to sound changes that historical linguists would normally

95

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

not consider as such, but rather regard as language-specific phonological processes oper-
ating on the allophonic level. Intervocal spirantization in Tamiḻ (e.g. d̪ > ð) is such a
case. More generally, the even voicing of intervocal plosives in Proto-Dravidian (as well as
modern Tamiḻ and Malayāḷaṁ) is not considered phonemic in the literature. You would
usually not want a sound law inference system to generate such sound laws, which would,
however, require phonemically instead of phonologically transcribed input data. During
development of EtInEn, we briefly considered creating a component that derives a phone-
mic representation for all of our word forms. However, it quickly turned out that there are
indeed positional allophones that we would want to distinguish under circumstances that
are not trivial to model objectively. Consider, for instance, the insertion of the nasals [ɲ]
and [ŋ] before word-initial front and back vowels in Nganasan and Nenets: Strictly speak-
ing, these are not phonemic; they do not contrast with raw word-initial vowels and their
occurrence is entirely predictable. Still, the nasal insertion is cited as an essential sound
law for these two languages throughout the Uralist literature (Janurik 1982; Sammallahti
1988; Mikola 2004). Objectively deriving a consistent phonemic transcription for a whole
lexical database is thus a task that cannot be solved easily.

A future task that is more immediately under the control of SoInEn is the improvement
of the alignments. We have seen that, even though enriched by phoneme similarity judg-
ments, the multiple sequence alignments generated during preprocessing are sometimes
quite messy. The implementation especially has problems aligning gaps, often preferring
to insert or delete vowels rather than consonants, instead aligning spurious consonant
sounds with vowels. This is because gaps are currently treated as phonemes as well. It
might be beneficial to introduce sophisticated gap penalties instead (cf. Phillips, Janies,
and Wheeler 2000).

In addition, the merging condition of the Gapped Frequency Trie needs to be refined, since
it sometimes assigns high frequency to sound correspondences that are only attested once,
but seemingly compatible with another very frequent partial sound correspondence. To
prevent this from happening too often, I have already implemented the restriction that
at least one sound change must be reflected in both merging candidates. This condition
seems to work well by itself, since virtually all of the problematic cases are instances where
a rare correspondence was merged with one that a linguist would consider to consist of
all-equal sounds, that were however transcribed with slightly different IPA symbols (see
section 5.3.2.3). The current merging condition therefore needs to be extended (rather than
replaced) to distinguish such notational differences from real phonemic distinctions.

Another bottleneck for the quality of SoInEn’s results was context detection. While in
many cases the data was just too sparse to infer the right conditions for sound changes,
the evidence would sometimes have justified the correct context, but was not properly
generalized. This was usually a problem with vowels: When a sound change occurs once
before, say, five different vowels, each of the individual Pnei observations is too infrequent
to justify even generating a Pcxt atom. Together, however, they provide compelling evi-
dence for a human linguist to infer a general vowel context. This could perhaps be resolved
by “lifting” the context of the Pnei observations already to sound classes, composing their
frequency prior out of the frequencies of the subclass observations. One must then take
care to not overgeneralize the sound classes (the five vowels provide equal evidence for

96

6.2. Working with PSL 6. CONCLUSION AND OUTLOOK

vowel, sonorant and anything), e.g. by penalizing more general sound classes. This would
be an exact reproduction of the current PSL rules for Pcxt atoms though, outsourcing one
additional inference step originally thought for PSL.

Further improvements to context detection could be made by considering more types
of contexts, e.g. referring to syllable structure. Many Samoyedic sound laws applied in
coda position, which had to be modeled as two conditioned sound changes in SoInEn,
one applying word-finally and the other before a consonant, the latter of which was only
possible due to Samoyedic’s lack of onset consonant clusters. Not a single one of these
sound laws was found. Having contexts such as “onset” or “coda” could be helpful, though
this would additionally require syllabification of the input data. Dravidian would also
have benefited from larger contexts spanning multiple symbols or being able to refer to
e.g. the nucleus of the following syllable. Other useful contexts could be reference to stress
patterns (which would have to be included in the input) or vowel harmony.

Finally, the biggest issue that caused most of SoInEn’s false negatives is data sparsity.
The 500− 700 mostly incomplete cognate sets found for Samoyedic and Dravidian in the
NorthEuraLex data are simply not enough for inferring precise conditioned sound laws.
This insight has strong implications for future data collection enterprises. As already
mentioned, NorthEuraLex is one of the larger lexical databases around. Many of its
competitors require only about 200 concepts per language, since this number has been
deemed ideal for phylogenetic inference (Rama and Wichmann 2018), the probably most
frequent use case of these databases. It now turns out though, that we might need far
more data for other applications in historical linguistics which extract more fine-grained
information for individual languages, such as the highly interwoven tasks of sound law
inference and proto-form reconstruction, both of which belong to List’s (2019) “Open
Problems”.

6.2 Working with PSL
As I have outlined in section 2.4, PSL seems like a perfect match for sound law detection,
promising precise and efficient inference over a model specified by logical rules directly
translating the human reasoning applied during the comparative method. Unfortunately,
this is often not as straightforward as anticipated.

While the very initial idea of this project was to recreate the entire comparative method
in a single PSL model, with all of its heuristics and interconnectivity, perhaps even linking
it directly to other EtInEn components such as loanword detection and reconstruction in
the future, it quickly turned out that the resulting dependency structure is too complex
even for PSL. That the final model is now separated into three distinct inference phases
and many steps were outsourced to dedicated Java implementations is the consequence of
this.

From my experience, I can confirm that the runtime of PSL’s inference algorithm does
indeed scale linearly with the number of ground rules. However, the number of ground
rules can easily explode exponentially depending on how many atoms a rule connects.
Usually, a significant amount of engineering is necessary to write rules in such a way that

97

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

they do not overly inflate the ground rule store, and it is often not trivial to find out
why a certain rule slows down inference so much more than another. While the logical
framework of PSL seemed to promise more or less straightforward translation of human
reasoning strategies into a probabilistic model, in reality, formulating PSL rules often
requires a mathematical way of thinking.

This is not PSL’s fault, but owed to the fact that first-order logic often follows different
reasoning paths than human intuition. Beltagy, Erk, and Mooney (2014) already found
that the Łukasiewicz way to interpret conjunctions is counter-intuitive when dealing with
fuzzy problems such as textual similarity. Similarly, implications often have different
semantics for humans than in mathematical logic. When I state: “If sound correspondence
X frequently occurs next to sound correspondence Y and Y is reconstructed to have evolved
from a proto-vowel, then X probably evolved next to vowels”, I implicitly assume that “X
evolved next to vowels” is not supported by this rule in case X and Y are never observed
together. In terms of logic, however, 0→ 1 ≡ 1, so such a rule is always supportive of the
consequent. In other terms, PSL cannot directly operate under the premise “no evidence is
equivalent to counter-evidence”. To implement this, one has to use negative priors, which
can be highly dependent on the size of the input data (see section 2.2.3).

Another problem is that, when there are several competing hypotheses, PSL becomes
very indecisive. Since there is no pressure on the antecedent to be true in order for the
consequent to reach an arbitrarily high belief in an implication, PSL is free to lower all
atoms’ belief values in order to reduce distance to satisfaction and ease the pressure on
the system. One often has to explicitly encourage it to assign higher belief by way of
arithmetic rules of the type Pred(+X) = 1. Even then, it will often find it cheaper to
distribute the belief mass evenly over all competing atoms than to make a clear decision
for one of them, and there is no direct way to tell it otherwise.

Despite these difficulties in designing the model, PSL has the immense advantage over
e.g. “black box” machine learning approaches that it is able to comprehensibly inform
about its reasoning. The Fact Viewer and its verbalization components for ground rules
that was created for EtInEn makes it possible to directly inspect the model’s decisions,
providing interesting information not only for debugging purposes. Using the LINQS
implementation’s rule weight learning algorithms, it is possible to train a PSL model and
explore the importance it attributes to the individual rules, which can give insights into
which parts of the comparative method contribute most to its unending success.

98

Bibliography

Aikhenvald, Alexandra Y. and R. M. W. Dixon (2001). “Introduction.” In: Areal Diffusion and
Genetic Inheritance. Problems in Comparative Linguistics. Ed. by Alexandra Y. Aikhenvald
and R. M. W. Dixon. Oxford: Oxford University Press, pp. 1–26.

Anderson, Cormac, Tiago Tresoldi, Thiago C. Chacon, Anne-Maria Fehn, Mary Walworth, Robert
Forkel, and Johann-Mattis List (2018). “A Cross-Linguistic Database of Phonetic Transcription
Systems.” In: Yearbook of the Poznań Linguistic Meeting. Vol. 4. 1, pp. 21–53.

Andronov, Michail S. (2003). A comparative grammar of the Dravidian languages. Ed. by Di-
eter B. Kapp. Beiträge zur Kenntnis südasiatischer Sprachen und Literaturen 7. Wiesbaden:
Harrassowitz Verlag.

Asher, Ronald E. and T. C. Kumari (1997). Malayalam. Ed. by Bernard Comrie. Descriptive
Grammars. London/New York: Routledge.

Bach, Stephen H., Matthias Broecheler, Bert Huang, and Lise Getoor (2017). “Hinge-Loss Markov
Random Fields and Probabilistic Soft Logic.” In: Journal of Machine Learning Research 18.109,
pp. 1–67. URL: http://jmlr.org/papers/v18/15‐631.html.

Beltagy, Islam (2016). “Natural Language Semantics Using Probabilistic Logic.” PhD thesis. Uni-
versity of Texas at Austin.

Beltagy, Islam, Katrin Erk, and Raymond Mooney (2014). “Probabilistic soft logic for semantic
textual similarity.” In: Proceedings of the 52nd Annual Meeting of the Association for Computa-
tional Linguistics. Baltimore, Maryland: Association for Computational Linguistics, pp. 1210–
1219.

Bouchard-Côté, Alexandre, David Hall, Thomas L. Griffiths, and Dan Klein (2013). “Automated
reconstruction of ancient languages using probabilistic models of sound change.” In: Proceedings
of the National Academy of Sciences 110.11, pp. 4224–4229.

Burrow, Thomas and Murray Barnson Emeneau (1984). A Dravidian Etymological Dictionary.
2nd ed. Oxford: Clarendon Press.

Campbell, Lyle (2013). Historical Linguistics. An introduction. 3rd ed. Edinburgh: Edinburgh
University Press.

Crowley, Terry and Claire Bowern (2010). An Introduction to Historical Linguistics. 4th ed. New
York: Oxford University Press.

Daneyko, Thora and Christian Bentz (2019). “Click languages tend to have large consonant in-
ventories: Implications for language evolution and change.” In: Modern Human Origins and

99

http://jmlr.org/papers/v18/15-631.html

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

Dispersal. Ed. by Yonatan Sahle, Hugo Reyes-Centeno, and Christian Bentz. Vol. 2. Word,
Bones, Genes, Tools: DFG Center for Advanced Studies. Tübingen: Kerns Verlag, pp. 315–329.

Dellert, Johannes (2017). “Information-Theoretic Causal Inference of Lexical Flow.” PhD thesis.
University of Tübingen.

Dellert, Johannes (2018). “Combining Information-Weighted Sequence Alignment and Sound Cor-
respondence Models for Improved Cognate Detection.” In: Proceedings of the 27th International
Conference on Computational Linguistics. Santa Fe, New Mexico, pp. 3123–3133.

Dellert, Johannes, Thora Daneyko, Alla Münch, Alina Ladygina, Armin Buch, Natalie Clarius, Ilja
Grigorjew, Mohamed Balabel, Hizniye Isabella Boga, Zalina Baysarova, Roland Mühlenbernd,
Johannes Wahle, and Gerhard Jäger (2020). “NorthEuraLex: a wide-coverage lexical database
of Northern Eurasia.” In: Language Resources and Evaluation 54, pp. 273–301.

Dellert, Johannes and Gerhard Jäger, eds. (2017). NorthEuraLex. Version 0.9. URL: http://www.
northeuralex.org/.

Deng, Lingjia and Janyce Wiebe (2015). “Joint Prediction for Entity/Event-Level Sentiment Analy-
sis using Probabilistic Soft Logic Models.” In: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Lisbon, pp. 179–189.

Dunn, Michael, ed. (2015). Indo-European Lexical Cognacy Database. URL: http://ielex.mpi.nl/
(visited on 06/13/2020).

Greenhill, Simon J., Robert Blust, and Russell D. Gray (2008). “The Austronesian basic vocabulary
database: from bioinformatics to lexomics.” In: Evolutionary Bioinformatics 4, pp. 271–283.

Hajdú, Péter (1988). “Die samojedischen Sprachen.” In: The Uralic Languages. Description, History
and Foreign Influences. Ed. by Denis Sinor. Leiden: E. J. Brill, pp. 3–40.

Hale, Mark (2007). “The Regularity of Sound Change.” In: Historical Linguistics. Theory and
Method. Blackwell Textbooks in Linguistics. Oxford: Blackwell Publishing, pp. 124–146.

Hall, David and Dan Klein (2010). “Finding Cognate Groups using Phylogenies.” In: Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 1030–1039.

Hämäläinen, Mika and Jack Rueter (2019). “Finding Sami Cognates with a Character-Based NMT
Approach.” In: Proceedings of the 3rd Workshop on Computational Methods for Endangered
Languages. Vol. 1, pp. 39–45.

Hammarström, Harald, Robert Forkel, and Martin Haspelmath, eds. (2019). Glottolog 4.1. URL:
http://glottolog.org (visited on 02/27/2020).

Harrison, S. P. (2003). “On the Limits of the Comparative Method.” In: The Handbook of Historical
Linguistics. Ed. by Brian D. Joseph and Richard D. Janda. Blackwell Handbooks in Linguistics.
Oxford: Blackwell Publishing, pp. 213–243.

Haspelmath, Martin and Uri Tadmor, eds. (2009). WOLD. Leipzig: Max Planck Institute for Evo-
lutionary Anthropology. URL: https://wold.clld.org/.

Helimski, Eugene (1993). “Prasamodijskie ə̑ i ə̈: praural’skie istočniki i nganasanskie refleksy.” In:
Hajdú Péter 70 éves. Ed. by Marianne Bakró-Nagy and Enikő Szíj, pp. 125–133.

Helimski, Eugene (2005). “The 13th Proto-Samoyedic vowel.” In: Mikola-konferencia 2004. Ed. by
Beáta Wagner-Nagy, pp. 27–39.

100

http://www.northeuralex.org/
http://www.northeuralex.org/
http://ielex.mpi.nl/
http://glottolog.org
https://wold.clld.org/

BIBLIOGRAPHY

Hruschka, Daniel J, Simon Branford, Eric D Smith, Jon Wilkins, Andrew Meade, Mark Pagel,
and Tanmoy Bhattacharya (2015). “Detecting regular sound changes in linguistics as events of
concerted evolution.” In: Current Biology 25.1, pp. 1–9.

Irikov, S. I. (1988). Slovar’ sel’kupsko-russkij i russko-sel’kupskij. Leningrad: Prosveščenie.

Jäger, Gerhard, Johann-Mattis List, and Pavel Sofroniev (2017). “Using support vector machines
and state-of-the-art algorithms for phonetic alignment to identify cognates in multi-lingual
wordlists.” In: Proceedings of the 15th Conference of the European Chapter of the Association
for Computational Linguistics. Vol. 1. Valencia, pp. 1205–1216.

Janhunen, Juha (1977). Samojedischer Wortschatz. Gemeinsamojedische Etymologien. Castrenian-
umin toimitteita 17. Helsinki: Suomalais-Ugrilainen Seura, Helsingin yliopisto.

Janhunen, Juha (1998). “Samoyedic.” In: The Uralic Languages. Ed. by Daniel Abondolo. Lon-
don/New York: Routledge, pp. 457–479.

Janurik, Tamás (1982). “Szamojéd hangmegfelelések.” In: Nyelvtudományi Közlemények. Ed. by
Péter Hájdu and Károly Rédei, pp. 41–89.

Kaiping, Gereon and Marian Klamer, eds. (2019). LexiRumah 3.0.0 –- A lexical database of Lesser
Sunda languages. URL: http://lexirumah.model‐ling.eu/ (visited on 06/14/2020).

Keane, Elinor (2004). “Tamil.” In: Journal of the International Phonetic Association: Illustrations
of the IPA 34.1, pp. 111–116.

Kiparsky, Paul (2003). “The Phonological Basis of Sound Change.” In: The Handbook of Historical
Linguistics. Ed. by Brian D. Joseph and Richard D. Janda. Blackwell Handbooks in Linguistics.
Oxford: Blackwell Publishing, pp. 313–342.

Kittel, Ferdinand (1894). A Kannaḍa-English Dictionary. Mangalore: Basel Mission Book & Tract
Depository.

Köllner, Marisa and Johannes Dellert (2016). “Ancestral State Reconstruction and Loanword De-
tection.” In: Proceedings of the Leiden Workshop on Capturing Phylogenetic Algorithms for
Linguistics. Ed. by Christian Bentz, Gerhard Jäger, and Igor Yanovich.

Krishnamurti, Bhadriraju (2003). The Dravidian Languages. Cambridge Language Surveys. Cam-
bridge: Cambridge University Press.

Kroonen, Guus (2013). Etymological Dictionary of Proto-Germanic. Ed. by Alexander Lubotsky.
Vol. 2. Leiden Indo-European Etymological Dictionary Series. Leiden/Boston: Brill.

Labat, Sofie and Els Lefever (2019). “A Classification-Based Approach to Cognate Detection Com-
bining Orthographic and Semantic Similarity Information.” In: Recent Advances in Natural
Language Processing 2019, pp. 603–611.

Lewis, M. Paul, Gary F. Simons, and Charles D. Fennig, eds. (2015). Ethnologue: Languages of the
World. URL: https://www.ethnologue.com/18 (visited on 02/27/2020).

LINQS Research Group (2018). Probabilistic Soft Logic (PSL). Version 2.1.0. URL: https://psl.
linqs.org/.

List, Johann-Mattis (2012). “LexStat: Automatic detection of cognates in multilingual wordlists.”
In: Proceedings of the EACL 2012 Joint Workshop of LINGVIS & UNCLH. Association for
Computational Linguistics. Avignon, pp. 117–125.

101

http://lexirumah.model-ling.eu/
https://www.ethnologue.com/18
https://psl.linqs.org/
https://psl.linqs.org/

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

List, Johann-Mattis (2019a). “Automatic inference of sound correspondence patterns across multi-
ple languages.” In: Computational Linguistics 45.1, pp. 137–161.

List, Johann-Mattis (2019b). Open problems in Computational Historical Linguistics. Invited talk
presented at the 24th International Conference of Historical Linguistics. Canberra.

List, Johann-Mattis, Cormac Anderson, Tiago Tresoldi, Simon J. Greenhill, Christoph Rzymski,
and Robert Forkel (2019). Cross-Linguistic Transcription Systems. Version 1.2.0. Max Planck
Institute for the Science of Human History, Jena. URL: https://clts.clld.org/ (visited on
09/13/2019).

List, Johann-Mattis, Philippe Lopez, and Eric Bapteste (2016). “Using Sequence Similarity Net-
works to Identify Partial Cognates in Multilingual Wordlists.” In: Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics. Berlin, pp. 599–605.

List, Johann-Mattis and Steven Moran (2013). “An Open Source Toolkit for Quantitative Historical
Linguistics.” In: Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics. Sofia, pp. 13–18.

Liu, Shulin, Kang Liu, Shizhu He, and Jun Zhao (2016). “A Probabilistic Soft Logic Based Approach
to Exploiting Latent and Global Information in Event Classification.” In: Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence. AAAI-16. Phoenix, Arizona: AAAI Press,
pp. 2993–2999.

Lowe, John B. and Martine Mazaudon (1994). “The Reconstruction Engine: A Computer Imple-
mentation of the Comparative Method.” In: Computational Linguistics 20.3, pp. 381–417.

Mennecier, Philippe, John Nerbonne, Evelyne Heyer, and Franz Manni (2016). “A Central Asian
language survey: Collecting data, measuring relatedness and detecting loans.” In: Language
Dynamics and Change 6.1, pp. 57–98.

Menon, A. Sreedhara (1978). Cultural Heritage of Kerala. An Introduction. Cochin: East-West
Publications.

Mi, Chenggang, Yating Yang, Lei Wang, Xi Zhou, and Tonghai Jiang (2018a). “A Neural Network
Based Model for Loanword Identification in Uyghur.” In: Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Evaluation (LREC-2018). Miyazaki, pp. 3575–
3579.

Mi, Chenggang, Yating Yang, Lei Wang, Xi Zhou, and Tonghai Jiang (2018b). “Toward better
loanword identification in uyghur using cross-lingual word embeddings.” In: Proceedings of the
27th International Conference on Computational Linguistics. Santa Fe, New Mexico, pp. 3027–
3037.

Mi, Chenggang, Yating Yang, Xi Zhou, Lei Wang, Xiao Li, and Tonghai Jiang (2016). “Recurrent
Neural Network Based Loanwords Identification in Uyghur.” In: Proceedings of the 30th Pacific
Asia Conference on Language, Information and Computation. Seoul, pp. 209–217.

Mikola, Tibor (1988). “Geschichte der samojedischen Sprachen.” In: The Uralic Languages. De-
scription, History and Foreign Influences. Ed. by Denis Sinor. Leiden: E. J. Brill, pp. 219–
263.

Mikola, Tibor (2004). Studien zur Geschichte der samojedischen Sprachen. Ed. by Beáta Wagner-
Nagy. Szeged: SzTE Finnisch-Ugrisches Institut.

Minett, James W. and William S.-Y. Wang (2003). “On detecting borrowing.” In: Diachronica 20.2,
pp. 289–330.

102

https://clts.clld.org/

BIBLIOGRAPHY

Monier-Williams, M. (1899). A Sanskrit-English Dictionary. Etymologically and philologically ar-
ranged with special reference to Cognate indo-european languages. URL: https://www.sanskrit‐
lexicon.uni‐koeln.de/scans/MWScan/2020/web/index.php.

Normanskaja, Julia (2018). “Reconstruction of the 14th and 15th Proto-samoyedic Vowels.” In:
NordSci Conference on Social Sciences. Conference Proceedings. Vol. 1. 1. Helsinki, pp. 295–
305.

Notredame, Cédric, Desmond G. Higgins, and Jaap Heringa (2000). “T-Coffee: A Novel Method
for Fast and Accurate Multiple Sequence Alignment.” In: Journal of Molecular Biology 302.1,
pp. 205–217.

Oakes, Michael P. (2000). “Computer Estimation of Vocabulary in a Protolanguage from Word
Lists in Four Daughter Languages.” In: Journal of Quantitative Linguistics 7.3, pp. 233–243.

Phillips, Aloysius, Daniel Janies, and Ward Wheeler (2000). “Multiple Sequence Alignment in
Phylogenetic Analysis.” In: Molecular Phylogenetics and Evolution 16.3, pp. 317–330.

Prakash, Ashok, Arpit Sharma, Arindam Mitra, and Chitta Baral (2019). “Combining Knowledge
Hunting and Neural Language Models to Solve the Winograd Schema Challenge.” In: Proceed-
ings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence,
pp. 6110–6119.

Rama, Taraka (2016). “Siamese convolutional networks for cognate identification.” In: Proceedings
of COLING 2016, the 26th International Conference on Computational Linguistics: Technical
Papers. Osaka, pp. 1018–1027.

Rama, Taraka and Johann-Mattis List (2019). “An automated framework for fast cognate detection
and Bayesian phylogenetic inference in computational historical linguistics.” In: 57th Annual
Meeting of the Association for Computational Linguistics. Florence.

Rama, Taraka, Johannes Wahle, Pavel Sofroniev, and Gerhard Jäger (2017). “Fast and unsupervised
methods for multilingual cognate clustering.” In: arXiv:1702.04938.

Rama, Taraka and Søren Wichmann (2018). “Towards identifying the optimal datasize for lexically-
based Bayesian inference of linguistic phylogenies.” In: Proceedings of the 27th International
Conference on Computational Linguistics. Santa Fe, New Mexico, pp. 1578–1590.

Rankin, Robert L. (2003). “The Comparative Method.” In: The Handbook of Historical Linguistics.
Ed. by Brian D. Joseph and Richard D. Janda. Blackwell Handbooks in Linguistics. Oxford:
Blackwell Publishing, pp. 183–212.

Rospocher, Marco (2018). “An Ontology-driven Probabilistic Soft Logic Approach to Improve NLP
Entity Annotations.” In: Proceedings of the 17th International Semantic Web Conference. Mon-
terey, California, pp. 144–161.

Sammallahti, Pekka (1988). “Historical Phonology of the Uralic Languages. With Special Reference
to Samoyed, Ugric, and Permic.” In: The Uralic Languages. Description, History and Foreign
Influences. Ed. by Denis Sinor. Leiden: E. J. Brill, pp. 478–554.

Schiffman, Harold F. (1999). A Reference Grammar of Spoken Tamil. Cambridge: Cambridge
University Press.

Schuchardt, Hugo (1885). Ueber die Lautgesetze. Gegen die Junggrammatiker. Berlin: Verlag von
Robert Oppenheim.

103

https://www.sanskrit-lexicon.uni-koeln.de/scans/MWScan/2020/web/index.php
https://www.sanskrit-lexicon.uni-koeln.de/scans/MWScan/2020/web/index.php

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

Setälä, Eemil (1901). “Über transskription der finnisch-ugrischen sprachen. Historik und vorschläge.”
In: Zeitschrift für Finnisch-Ugrische Sprach- und Volkskunde 1. Ed. by Eemil Setälä and Kaarle
Krohn, pp. 15–52.

Sridhar, Dhanya, James Foulds, Bert Huang, Lise Getoor, and MarilynWalker (2015). “Joint models
of disagreement and stance in online debate.” In: Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing, pp. 116–125.

Staal, J. F. (1963). “Sanskrit and Sanskritization.” In: The Journal of Asian Studies 22.3, pp. 261–
275.

Tuisk, Tuuli (2010). “Some Aspects of Quantity in Central Veps.” In: Linguistica Uralica 46.4,
pp. 241–249.

Turchin, Peter, Ilia Peiros, and Murray Gell-Mann (2010). “Analyzing genetic connections between
languages by matching consonant classes.” In: Journal of Language Relationship 3, pp. 117–126.

Wang, Wei-Chung and Lun-Wei Ku (2016). “Identifying Chinese lexical inference using probabilistic
soft logic.” In: Proceedings of the 2016 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining. San Francisco, California, pp. 737–743.

Wang, Wei-Chung and Lun-Wei Ku (2017). “Enabling Transitivity for Lexical Inference on Chinese
Verbs Using Probabilistic Soft Logic.” In: Proceedings of The 8th International Joint Conference
on Natural Language Processing. Taipei, pp. 110–119.

Wichmann, Søren, Eric W. Holman, and Cecil H. Brown, eds. (2020). The ASJP Database. Ver-
sion 19. URL: https://asjp.clld.org/.

104

https://asjp.clld.org/

A Source Code

The source code of SoInEn, as it was presented in this thesis, is available from:

• https://github.com/tdaneyko/etinen‐soundlaws‐standalone/releases/tag/ma‐thesis
(Standalone SoInEn without the EtInEn GUI)

• https://github.com/jdellert/etinen‐full/releases/tag/ma‐thesis‐tdaneyko
(EtInEn (GUI) with integrated SoInEn)

As of now, EtInEn is still under development, and the repositories are private. They will
be made public once the first version of EtInEn is released. If you wish to gain pre-release
access to the code, please contact

• Thora Daneyko (thora.daneyko@student.uni-tuebingen.de) for standalone SoInEn,
or

• Johannes Dellert (johannes.dellert@uni-tuebingen.de) for EtInEn or the EtInEn-
independent PSL wrapper with the Fact Viewer.

Sound Transition Matrix and Gold Standard
The files containing the sound transition matrix described in section 4.2.6 is located
(in both repositories) under etinen‐soundlaws/src/main/resources/sound‐transition‐
matrix.tsv.

The gold standard files for Dravidian and Samoyedic can be found under etinen‐soundlaws/
src/test/resources/eval/. The suffix ‐nelexmarks the NorthEuraLex-specific gold stan-
dard files that were used during the evaluation discussed in chapter 5. The ‐phonemic
files are directly derived from the sound laws presented in chapter 3, whereas in the
‐phonemic‐single files, phoneme clusters were dissolved to fit the Plaw format, but no
NorthEuraLex-specific transformations were performed yet.

105

https://github.com/tdaneyko/etinen-soundlaws-standalone/releases/tag/ma-thesis
https://github.com/jdellert/etinen-full/releases/tag/ma-thesis-tdaneyko

B Sound Classes

The following table lists all sound classes used by SoInEn. How these classes were obtained
is described in section 4.2.5. In addition, each of the single sounds is a sound class as well,
containing only itself.

Lvl Class Members
1 anything vowel, consonant
1 anything obstruent, sonorant
2 obstruent stop, fricative, affricate
2 sonorant nasal, approximant, trill, tap, vowel
3 vowel unrounded, rounded
3 vowel open, near-open, open-mid, mid, close-mid, near-close, close
3 vowel front, near-front, central, near-back, back
3 consonant voiced, voiceless
3 consonant stop, fricative, affricate, nasal, approximant, trill, tap
3 consonant labial, dental, alveolar, post-alveolar, alveolo-palatal, palatal,

retroflex, velar, uvular, glottal, epiglottal, pharyngeal
3 consonant continuant, occlusive
3 consonant sibilant
3 consonant liquid
4 labial bilabial, labio-dental, labio-palatal, labio-velar
4 continuant fricative, approximant, trill
4 occlusive stop, affricate, nasal
4 liquid rhotic, lateral
5 affricate c͡ç, d͡z, d͡ʑ, d͡ʒ, p͡f, q͡χ, t͡s, t͡ɕ, t͡ɬ, t͡ʃ, ɖ͡ʐ, ɟ͡ʝ, ʈ͡ʂ
5 alveolar d, d͡z, l, n, r, s, t, t͡s, t͡ɬ, z, ɬ, ɮ, ɹ, ɺ, ɾ
5 alveolo-palatal d͡ʑ, t͡ɕ, ɕ, ʑ
5 approximant j, l, l,̪ w, ɥ, ɭ, ɹ, ɻ, ʋ, ʍ, ʎ

106

2. SOUND CLASSES

Lvl Class Members
5 back o, u, ɑ, ɒ, ɔ, ɤ, ɯ, ʌ
5 bilabial b, m, p, ɸ, β
5 central ɐ, ɘ, ə, ɜ, ɨ, ɵ, ʉ
5 close i, u, y, ɨ, ɯ, ʉ
5 close-mid e, o, ø, ɘ, ɤ, ɵ
5 dental d̪, l,̪ n̪, s,̪ t,̪ ð, θ
5 epiglottal ʜ, ʡ
5 fricative f, h, s, s,̪ v, x, z, ç, ð, ħ, ɕ, ɣ, ɦ, ɬ, ɮ, ɸ, ʁ, ʂ, ʃ, ʐ, ʑ, ʒ, ʕ, ʜ, ʝ,

β, θ, χ
5 front a, e, i, y, æ, ø, œ, ɛ
5 glottal h, ɦ, ʔ
5 labio-dental f, p͡f, v, ɱ, ʋ
5 labio-palatal ɥ
5 labio-velar w, ʍ
5 lateral l, l,̪ t͡ɬ, ɬ, ɭ, ɮ, ɺ, ʎ
5 mid ə
5 nasal m, n, n̪, ŋ, ɱ, ɲ, ɳ, ɴ
5 near-back ʊ
5 near-close ɪ, ʊ, ʏ
5 near-front ɪ, ʏ
5 near-open æ, ɐ
5 open a, ɑ, ɒ
5 open-mid œ, ɔ, ɛ, ɜ, ʌ
5 palatal c, c͡ç, j, ç, ɟ, ɟ͡ʝ, ɲ, ʎ, ʝ
5 pharyngeal ħ, ʕ
5 post-alveolar d͡ʒ, t͡ʃ, ʃ, ʒ
5 retroflex ɖ, ɖ͡ʐ, ɭ, ɳ, ɻ, ɽ, ʂ, ʈ, ʈ͡ʂ, ʐ
5 rhotic r, ɹ, ɺ, ɻ, ɽ, ɾ, ʀ, ʁ
5 rounded o, u, y, ø, œ, ɒ, ɔ, ɵ, ʉ, ʊ, ʏ
5 sibilant d͡z, d͡ʑ, d͡ʒ, s, s,̪ t͡s, t͡ɕ, t͡ʃ, z, ɕ, ɖ͡ʐ, ʂ, ʃ, ʈ͡ʂ, ʐ, ʑ, ʒ
5 stop b, c, d, d̪, k, p, q, t, t,̪ ɖ, ɟ, ɡ, ɢ, ʈ, ʔ, ʡ
5 tap ɺ, ɽ, ɾ
5 trill r, ʀ
5 unrounded a, e, i, æ, ɐ, ɑ, ɘ, ə, ɛ, ɜ, ɤ, ɨ, ɪ, ɯ, ʌ
5 uvular q, q͡χ, ɢ, ɴ, ʀ, ʁ, χ
5 velar k, x, ŋ, ɡ, ɣ
5 voiced b, d, d̪, d͡z, d͡ʑ, d͡ʒ, j, l, l,̪ m, n, n̪, r, v, w, z, ð, ŋ, ɖ, ɖ͡ʐ, ɟ, ɟ͡ʝ, ɡ,

ɢ, ɣ, ɥ, ɦ, ɭ, ɮ, ɱ, ɲ, ɳ, ɴ, ɹ, ɺ, ɻ, ɽ, ɾ, ʀ, ʁ, ʋ, ʎ, ʐ, ʑ, ʒ, ʕ, ʝ, β

107

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

Lvl Class Members
5 voiceless c, c͡ç, f, h, k, p, p͡f, q, q͡χ, s, s,̪ t, t,̪ t͡s, t͡ɕ, t͡ɬ, t͡ʃ, x, ç, ħ, ɕ, ɬ, ɸ,

ʂ, ʃ, ʈ, ʈ͡ʂ, ʍ, ʔ, ʜ, ʡ, θ, χ

108

C Gold Standard Files Used in
Evaluation

C.1 Dravidian
#inventory
i e a ə o u p t̪ t ʈ t ʃ͡ k b d̪ d ɖ d ʒ͡ ɡ m n̪ ɳ ɲ l ɭ ɾ ʋ ɻ j

#soundlaws
//lang proto target left right set comment

kan i ɛ 0 *a with /a/ in next syllable
kan u ɔ 0 *a with /a/ in next syllable
tel i e 0 *a with /a/ in next syllable
tel u o 0 *a with /a/ in next syllable
tam,mal e i 0 *a with /a/ in next syllable
tam,mal o u 0 *a with /a/ in next syllable
kan e ɪ 0 *high with high vowel in next syllable
kan o ʊ 0 *high with high vowel in next syllable

kan p h # 0
kan m ‐ 0 b
kan b ʋ m 0
tel b ‐ m 0
kan p ‐ p 0 kan‐pp
kan p ‐ 0 p kan‐pp
tel p ‐ p 0 tel‐pp
tel p ‐ 0 p tel‐pp
tam,mal m ‐ 0 p

tam d̪ vowel 0
mal d̪ n̪ n̪ 0
kan t̪ ‐ t̪ 0 kan‐tt
kan t̪ ‐ 0 t̪ kan‐tt
tel t̪ ‐ t̪ 0 tel‐tt
tel t̪ ‐ 0 t̪ tel‐tt

109

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

tam,mal n̪ ‐ 0 t̪

tam,mal,kan d r vowel 0
tel d ɽ vowel 0
tam n ɳ 0 0
tam d ɳ n 0
mal n n̪ 0 0
mal d n̪ n 0
kan n n̪ 0 0
kan d d̪ n 0
tel n ɳ 0 0
tel d ɖ n 0
kan t r t 0 kan‐_t_t‐r
kan t r 0 t kan‐_t_t‐r
kan t t̪ t 0 kan‐_t_t‐t
kan t t̪ 0 t kan‐_t_t‐t
tel t ʈ t 0 tel‐_t_t
tel t ʈ 0 t tel‐_t_t
kan t ‐ t 0 kan‐_t_t
kan t ‐ 0 t kan‐_t_t
tel t ‐ t 0 tel‐_t_t
tel t ‐ 0 t tel‐_t_t
tam,mal n ‐ 0 t

mal,tel t ʃ͡ t ɕ͡ 0 0
kan t ʃ͡ s # 0
tam,kan d ʒ͡ s vowel 0
tel d ʒ͡ s̪ vowel 0
mal d ʒ͡ ɲ ɲ 0
kan t ʃ͡ ‐ t 0 kan‐cc
kan t ‐ 0 t ʃ͡ kan‐cc
tel t ʃ͡ ‐ t 0 tel‐cc
tel t ‐ 0 t ʃ͡ tel‐cc
tam,mal ɲ ‐ 0 t ʃ͡

kan ʈ ‐ ʈ 0 kan‐.t.t
kan ʈ ‐ 0 ʈ kan‐.t.t
tel ʈ ‐ ʈ 0 tel‐.t.t
tel ʈ ‐ 0 ʈ tel‐.t.t
tam,mal ɳ ‐ 0 ʈ

tam k t ʃ͡ # front
mal,tel k t ɕ͡ # front
kan,tel k ɡ # *son irregularly, when following syllable starts with

sonorant consonant
tam ɡ ɣ vowel 0
mal ɡ ŋ ŋ 0
kan k ‐ k 0 kan‐kk
kan k ‐ 0 k kan‐kk
tel k ‐ k 0 tel‐kk
tel k ‐ 0 k tel‐kk

110

C.1. Dravidian 3. GOLD STANDARD FILES USED IN EVALUATION

tam,mal ŋ ‐ 0 k

kan,tel ɲ n̪ 0 0

tel ɳ n̪ 0 0

kan ʋ b # 0

tel ɭ l 0 0

kan,tel ɾ r 0 0

kan ɻ r 0 consonant
kan ɻ ɭ 0 0
tel ɻ r consonant 0
tel ɻ ɖ 0 0

// Transcription‐specific sound laws:

// Short /a/ is transcribed [ə] in non‐initial syllables in Tamil and
Malayalam, [ə] except word‐finally in Kannada, and ʌ[] everywhere in
Telugu and can hence be reconstructed as [ə] instead of [a]

tam ə a # 0 tam‐a
tam ə a *#C 0 tam‐a
mal ə a # 0 mal‐a
mal ə a *#C 0 mal‐a
kan ə a 0 #
tel ə ʌ 0 0

// Tamil non‐initial /u/ is transcribed ʉ[]
tam u ʉ 0 # tam‐u
tam u ʉ *non‐init 0 tam‐u
// Tamil and Kannada insert [w] before word‐initial [u], [o] and [j] before

word‐initial [i], [e]
tam,kan ‐ w # back
tam,kan ‐ j # front

// Malayalam word‐final *u is [ɨ̆]
mal u ɨ 0 #
// Malayalam /kk/ is audibly palatalized after /i/ and in some other instances
mal ‐ ʲ k 0
// Also, Malayalam /ɾ/ is generally palatalized
mal ‐ ʲ ɾ 0
// Malayalam [n̪] is alveolar [n] intervocally and word‐finally
mal n̪ n vowel vowel
mal n̪ n 0 #

// Kannada short /i/, /e/, /o/ and /u/ are transcribed lax except word‐finally
kan i ɪ 0 consonant kan‐i
kan i ɪ 0 vowel kan‐i

111

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

kan e ɛ 0 consonant kan‐e
kan e ɛ 0 vowel kan‐e
kan o ɔ 0 consonant kan‐o
kan o ɔ 0 vowel kan‐o
kan u ʊ 0 consonant kan‐u
kan u ʊ 0 vowel kan‐u

C.2 Samoyedic
#groups
[i,e] i e

#inventory
i y ɯ u e ø ə ɤ o æ ɒ p t k ʈ ʂ͡ m n ɲ ŋ s l r w j

#soundlaws
//lang proto target left right set comment

nio æ ɐ 0 0
enf æ e 0 0
yrk æ ɑ 0 0
sel æ ø 0 0

nio ɒ o # 0
nio ɒ u 0 0
enf,yrk ɒ ɑ 0 0
sel ɒ a 0 0

nio e ɐ 0 0 irregular

nio ø u 0 0
enf,yrk ø o 0 0
sel ø y 0 0

nio i ɨ labial 0

nio y i 0 0
enf,yrk y u 0 0

nio ɤ ɨ 0 r
nio ɤ ɐ 0 0
enf ɤ u labial 0
enf ɤ i 0 0
yrk ɤ e 0 0
sel ɤ ɨ 0 0

nio o u 0 0

enf ɯ u labial 0
nio,enf,yrk,sel ɯ i 0 0

112

C.2. Samoyedic 3. GOLD STANDARD FILES USED IN EVALUATION

nio ə e palatal 0
enf ə o 0 0
yrk,sel ə ɑ 0 0

nio ‐ ʲ alveolar front
yrk ‐ ʲ consonant front

nio p h 0 vowel
nio p b 0 consonant
nio p b 0 #
enf,yrk p b vowel vowel
enf p ‐ 0 consonant
enf p ‐ 0 #

nio t t 0 vowel nio‐t
nio t vowel vowel nio‐t
enf,yrk t d vowel vowel
enf t ‐ 0 consonant
enf t ‐ 0 #
nio,yrk t ʔ 0 consonant
nio,yrk t ʔ 0 #

enf s ‐ 0 consonant
enf s ‐ 0 #
nio,yrk s ʔ 0 consonant
nio,yrk s ʔ 0 #

nio ʈ ʂ͡ s 0 [i,e] nio‐c‐pal
nio ʈ ʂ͡ s 0 ʲ nio‐c‐pal
nio ʈ ʂ͡ t 0 vowel nio‐c
nio ʈ ʂ͡ vowel vowel nio‐c
enf,yrk ʈ ʂ͡ d vowel vowel
enf ʈ ʂ͡ ‐ 0 consonant
enf ʈ ʂ͡ ‐ 0 #
sel ʈ ʂ͡ ɕ 0 [i,e]
nio,yrk ʈ ʂ͡ ʔ 0 consonant
nio,yrk ʈ ʂ͡ ʔ 0 #
nio,enf,yrk,sel ʈ ʂ͡ t 0 0

nio k s 0 [i,e] nio‐k‐pal
nio k s 0 ʲ nio‐k‐pal
enf k s 0 front
enf k h vowel back
enf k ‐ 0 consonant
enf k ‐ 0 #
yrk k s 0 front yrk‐k‐pal
yrk k s 0 ʲ yrk‐k‐pal
yrk k x 0 back
sel k ɕ 0 [i,e]
sel k q 0 open

113

AUTOMATED SOUND LAW INFERENCE USING PSL Thora Daneyko

sel k q 0 close‐mid
nio,yrk k ʔ 0 consonant
nio,yrk k ʔ 0 #

nio m ‐ 0 # multi‐syllable words only
enf m ‐ vowel vowel
enf m ‐ 0 consonant
enf m ‐ 0 #
yrk m w vowel vowel

nio n ‐ 0 # multi‐syllable words only
nio n ŋ 0 # single‐syllable words only
enf n ‐ 0 consonant
enf n ‐ 0 #
yrk n ʔ 0 consonant
yrk n ʔ 0 #

nio,enf ɲ ‐ vowel vowel
yrk ɲ j vowel vowel

nio ŋ ‐ 0 # multi‐syllable words only
enf ŋ ‐ vowel 0
yrk ŋ ʔ 0 consonant
yrk ŋ ʔ 0 #

nio ‐ ɲ # [i,e]
nio ‐ ŋ # vowel
yrk ‐ ɲ # front
yrk ‐ ŋ # back

enf l r vowel vowel
enf l ‐ 0 consonant
enf l ‐ 0 #

enf r ‐ 0 consonant
enf r ‐ 0 #

nio w b 0 0
enf w b # 0
enf,sel w ‐ vowel vowel
yrk w j 0 front
yrk w b vowel vowel
sel w k # 0

nio j d 0 vowel nio‐j‐d
nio j d 0 ʲ nio‐j‐d
enf j d # 0
yrk j ‐ 0 consonant
yrk j ‐ 0 #
sel j t ɕ͡ 0 vowel

114

	Introduction
	Methods in Phonological Comparative Linguistics
	Expressing Sound Change
	The Regularity of Sound Change
	The Comparative Method
	General Procedure
	Shortcomings

	Lexical Databases
	NorthEuraLex

	Automating the Comparative Method

	Probabilistic Soft Logic
	PSL Syntax
	Predicates and Atoms
	Rules

	The LINQS Grounding Process
	Grounding Variables
	Grounding Open and Closed Predicates
	Priors as Replacement for Negative Evidence

	Hinge-Loss Markov Random Fields
	Translating Atoms and Rules into HL-MRFs
	Properties of HL-MRFs

	PSL for Historical Linguistics

	Preparation of Gold Standard Sound Law Sets
	Dravidian
	Proto Vowels
	Proto Consonants
	Phonotactics
	Sound Changes
	Challenges

	Samoyedic
	Proto Vowels
	Proto Consonants
	Phonotactics
	Sound Changes
	Challenges

	SoInEn, a PSL Model for Sound Law Inference
	Integration into EtInEn
	Predicate Naming Conventions
	Database Manipulation
	User Interface

	Providing World Knowledge
	Cognate Judgments
	Alignment
	Counting Sound Correspondences
	N-Grams of Sound Correspondences
	Sound Classification
	Sound Transition Matrix

	Phase 1: Proto Inventory Reconstruction
	Predicates
	Ideas
	Rules

	Phase 2: Context Detection
	Predicates
	Ideas
	Rules

	Phase 3: Sound Law Inference
	Predicates
	Ideas
	Rules

	Evaluation
	Setup
	Format of the Evaluation Files
	Generating Gold Standard Sound Correspondences

	Method
	General Measures
	Loose Context Matching

	Results and Discussion
	Phase 1: Proto Inventory Reconstruction
	Phase 3: Sound Law Inference

	Conclusion and Outlook
	Future Work
	Working with PSL

	Bibliography
	Source Code
	Sound Classes
	Gold Standard Files Used in Evaluation
	Dravidian
	Samoyedic

