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Abstract
EVOLAEMP is a current research project on comparative historical linguistics
which is compiling a large lexical database called NorthEuraLex covering most
languages of Northern Eurasia. To be able to compare the lexemes of these
languages with their different writing systems and orthographies, NorthEuraLex
aims to provide phonetic transcription in IPA for all entries. Because expert
transcriptions are hard to obtain for smaller languages, automatic rule-based
transcriptors have been developed.
However, the current system is quite inefficient, resulting in bad performance
especially on longer words. Thus, I develop and test a revision of this imple-
mentation using finite state transducers (FST), which have previously proven to
be very suitable for modeling phonological processes. The new implementation
should perform faster and be able to operate on the system-independent rule
sets already developed for 107 languages.
The FST interface used in my system is the Helsinki Finite State Toolkit
(HFST). It provides the possibility to directly construct FSTs from regular ex-
pressions. Hence, my transcriptors first translate the EVOLAEMP rule sets to
regular expressions. The resulting transducer can then be accessed to convert
the lexical data to IPA.
With this method, the output of the current system can almost entirely be
replicated. However, the FST is not able to completely model the behavior of
the current transcriptors, so a few changes to the rule sets may be necessary.
Still, the new implementation operates significantly faster on longer paragraphs
and is thus well suited for transcribing complete texts, but performs slightly
worse on lists of single words, such as the entries in NorthEuraLex.
Thus, while being a good approach, it still needs some improvements before
replacing the current EVOLAEMP transcriptors.
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1 Introduction
In comparative historical linguistics, large-scale lexical databases have become
invaluable for establishing cognacy relations and examining language evolution.
However, comparing entries from languages with different writing systems and
orthographies is complicated. Thus, it is necessary to have a uniform phonetic
transcription for your lexical data.
The existing databases treat this problem differently. While the Austronesian
Basic Vocabulary Database (ABVD) does not provide any phonetic descrip-
tion for its data (Greenhill, Blust, and Gray 2008)1, the creators of the ASJP
database have developed their own transcription scheme (Brown et al. 2008),
which, however, only distinguishes 41 phonemes. This is not enough for properly
reflecting the sound inventory of many languages. The Indo-European Lexical
Cognacy Database (IELex) provides transcriptions in the more detailed IPA, but
only for few languages (Indo-European Lexical Cognacy Database 2016).
The fragmentary and inconsistent state of phonetic transcription among the
larger lexical databases stems from the lack of data for many of the smaller lan-
guages. Lexicons rarely provide pronunciation information for individual entries
and if they do, they often make use of respellings in the other language’s or-
thography instead of precise phonetic transcription. Finding a native speaker to
provide information on pronunciation is time-consuming, and often impossible
for languages on the brink of extinction. However, grammars usually provide
detailed information on phonology, including phonological processes such as as-
similation. While a human unfamiliar with the language might not gain much
from reading these descriptions, programming computers to apply these rules
and derive a phonetic transcription could prove beneficial. It should also facil-
itate corrections, since single rules can easily be added or modified to improve
the output, while in case of manual transcriptions, the complete transcribed
data would have to be examined. In fact, automatic rule-based transcription
systems have already been successfully developed for text-to-speech applications
(e.g. Braga and Coelho 2006; Toma and Munteanu 2009).
EVOLAEMP is a current research project on cultural language evolution at the
University of Tübingen which has implemented such a transcription system for
its own lexical database NorthEuraLex (EVOLAEMP. Language Evolution: The
Empirical Turn 2016). The project aims at compiling word lists covering 1,016
concepts for the languages of Northern Eurasia as a basis for statistical research.
Currently, near-complete data for 104 languages has been gathered, and data
for more languages is still being collected (Dellert et al. 2016). Furthermore,
automatic rule-based transcriptors for 107 of these languages have been created.
Since the rewrite rules for these transcriptors are stored in plain text files, they
can easily be modified and integrated into other programs.
In this thesis, I present a revision of EVOLAEMP’s transcription system based
on finite state transducers (FST). My implementation aims to exceed the old

1It does provide an IPA-like transcription for languages without an official orthography, but
inconsistently. The glottal stop, for instance, is sometimes transcribed with IPA’s ʔ and sometimes
with an apostrophe (instead of the ʻokina), and long vowels may be marked by double letters, a
macron and only rarely by the IPA sign ː. Compare e.g. these translations for ‘belly’: Hawaiian
’ōpū, Tahitian ’oopuu, Rurutuan ʔoopuu, Musao goːwa.
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transliterators in performance and make it applicable for purposes other than
processing lists of short words, e.g. phonetic transcription of whole texts. Addi-
tionally, the FST-based transcriptors can more easily be integrated into other
systems, since they employ fully functional transducers convertible into various
well-known formats which may also be distributed independently. Ideally, the
new implementation should generate the exact same results as the old system,
so that the existing 107 rule sets do not have to be altered.
In section 2, I introduce the previous EVOLAEMP transliterator system and
explain the format of its rule files, which are the basis for my FST implemen-
tation. In section 3, I then provide an overview over finite state transducers
and the most important operations for reproducing the output of the previous
system. The FST implementation I am using for my system is the Helsinki
Finite State Toolkit (HFST), whose features I present in section 4. A special
focus lies on the format of its regular expressions, which are crucial in con-
verting the EVOLAEMP phonetic rules into finite state transducers. Section 5
then introduces and explains my implementation of an FST-based transcription
system, pulling together the insights gained from the previous sections. The
results of a runtime test performed by both the old and my FST system are
presented in section 6 to show the advantages and disadvantages of the new
implementation.
The complete code of the transliterator system is provided in the appendix,
with the specific transliterator for Aleut and the corresponding rule files as an
example.

2 EVOLAEMP Transliterators
EVOLAEMP’s previous transliterator system was a quick and simple Java im-
plementation by Johannes Dellert, which I will from now on refer to as the
naive transliterators. Within this system, transcription rules are stored in one
or more plain text files for each language and accessed by the corresponding
transliterator class to convert the user input. To facilitate the creation of new
transliterators, the files for the individual languages do not directly transliterate
to IPA. Instead, the data is first mapped to X-SAMPA, an ASCII representation
of IPA that can easily be input with any roman character keyboard (Wells 1995).
The X-SAMPA transcription can then be unambiguously converted to IPA in a
final transliteration step. Additionally, all input words are surrounded by word
boundary marks # and converted to lower case before the actual transliteration
process begins.
The naive implementation is working well for its purpose, i.e. transcribing word
lists of about 1,000 items to IPA. However, as will be explained in this section
and demonstrated in section 6, its short development time comes at the cost of
bad performance, especially on larger data and actual texts. Hence, it was to
be eventually replaced by a more efficient system, which I am presenting in this
thesis.
This section gives an introduction to the current EVOLAEMP transliterator
system. First, I introduce the format of the rule files, which is adopted by
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the new FST implementation as well. I then quickly explain how the naive
transliterator program works and where its weaknesses come from. Finally, I list
the properties of the previous system resulting from the naive implementation
and the rule format that have to be emulated by the new implementation to
guarantee backward compatibility.

2.1 Rule files

The rule files are the core of the transliterator system, since they contain the
language specific mappings from original orthography to phonetic transcription.
The format of the rules is simple, but powerful, and can be used not only for
grapheme-to-phoneme conversions, but also to perform phonological processes
not represented in the script, such as assimilation. As an example of how the
rules can be used to model the phonology of a language, I will construct part of
the files for an Aleut-to-IPA transliterator.
While historically, Aleut has been written in Cyrillic script, the Aleut vocabulary
in the EVOLAEMP database uses the Roman orthography developed in 1972
(Bergsland 1994, pp. xvi ff.). Many letters, such as p, n or i, equal their X-
SAMPA (and IPA) realizations, so no rules are needed to transcribe them. The
remaining characters and character sequences can be expressed in 20 rules and
are stored in a file called ale2xsampa:

aa a: hm m_0 oo o:
ch t)S hn n_0 q q_h
d D hng N_0 r r\
ĝ R hw W uu u:
g G hy C x̂ X
hd T ii i: y j
hl K ng N '

There is one rule per line, and the input and output side of each rule are sep-
arated by a single tab stop. The output side of a rule can also be empty to
account for deletion of characters or character sequences. Aleut, for example,
uses the apostrophe ' to divide digraphs like ng into the separately pronounced
letters n and g. Since the apostrophe does not carry any phonological informa-
tion itself, we want to get rid of it during the transcription process, so we have
added a rule ' → ∅.
Comments, i.e. lines of text that will not be interpreted by the transliterator
program, can be added by prefixing two forward slashes (//). In our Aleut file,
we might want to record the source of the rules we created, so we can add the
following line:
// Source: Knut Bergsland - Aleut Dictionary (1994)
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2.1.1 Context groups

Naturally, simple grapheme-to-phoneme mappings are usually not sufficient to
properly render the pronunciation of a language. Unwritten sounds and pro-
cesses such as assimilation or epenthesis need to be captured to arrive at a
satisfying transcription. Our example language Aleut, for instance, features ex-
tensive vowel coloring in the vicinity of certain consonants. It would be tedious
to write down all possible combinations of vowels and consonants in this case,
so we can define sound groups within the rule file, allowing us to capture simi-
lar phonological processes in a single rule. In analogy to the sound contexts in
actual phonological rules, we call these sound groups context groups.
This is how we could encode vowel retraction next to uvular consonants in Aleut
(Bergsland 1994) in a file we call ale-vowels:

#def uvular [q_h X R]

[uvular]i [.]e
[uvular]a [.]A
[uvular]u [.]o
i[uvular] e[.]
a[uvular] A[.]
u[uvular] o[.]
i:[uvular] e:[.]
a:[uvular] A:[.]
u:[uvular] o:[.]

The context group covering Aleut’s uvular consonants is created using the key-
word #def, the name of the group (uvular) and the glyphs or sounds it contains
(q_h, R, X), all three separated by tab stops. The members of the group are en-
closed in square brackets and separated by whitespaces. They do not need to be
single characters, but can be of arbitrary length. Context groups are immutable,
i.e. they can only be inserted into a rule to provide context for other charac-
ters. We cannot, for instance, define a context group default-vowel containing
i, a and u, and map its members to those of another group retracted-vowel
containing e, A and o.
To use our uvular group inside a rule, we place its name in square brackets
(i.e. [uvular]) on the input side. This keyword will then be interpreted as ‘any
of the character strings contained inside this group’. On the output side, each
context group introduced on the input side must be matched by the sequence
[.]. Hence, contexts cannot swap positions, since the transliterator will always
interpret the [.]s in the order the groups appeared on the input side.

2.2 Naive transliterator

After having constructed some rule files, we will now look at how the translit-
erator program works.
A transliterator for a language, such as Aleut, actually consists of multiple
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int start = 0
while start < input.length

int oldStart = start
for rule in rules

boolean match = false
int end = line.length
while end > start

if rule.left matches line.substring(start, end)
output += rule.right
start = end
match = true
break

else
end--

if match
break

if start == oldStart
output += line.charAt(start)
start++

Figure 1: Pseudocode of the conversion of a line of input by a naive transliterator
covering a single rule file.

transliterators, one for each rule file. The main transliterator merely passes the
user input through these individual transliterators in the specified order.
Upon construction, each of these transliterators reads its assigned rule file and
stores all rules in a list. Then, it loops through this list, looking for a matching
rule. For each rule, it considers the whole input string and then prefixes of
decreasing length until one of them either matches the left side of the rule
or the current substring is empty. In the latter case, it proceeds to the next
rule. If no applicable rule has been found, the initial character is moved to the
output string unchanged. After a rule has been successfully applied or the initial
character has been cut off, it skips back to the first rule and repeats the whole
procedure on the remaining substring until the input is converted completely.
Figure 1 illustrates this procedure.
To illustrate this, let us look at how the transliterator would proceed on the
Aleut word chax̂ ‘hand’ using the simple grapheme-to-phoneme file ale2xsampa
we developed in section 2.1. The first rule of the file is aa → a:. The translit-
erator will now unsuccessfully attempt to match chax̂, cha, ch and c to aa.
Since the application of this rule failed, it will proceed to the next one, ch →
t)S. chax̂ and cha do not match ch either, but the next prefix, ch, does, so
the program transliterates this bit and repeats the procedure with the remain-
ing sequence ax̂. Since neither ax̂ nor a are matched by any of the rules, the
transliterator ends up moving a to the output string unaltered, which now reads
t)Sa. Finally, all rules are run over x̂, which is ultimately matched by rule 19,
x̂ → X. Hence, the final output is t)SaX.
Needless to say, this procedure is highly inefficient, as its operating time grows
significantly the longer the rule files and input strings are. For transliterating
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the single words in the EVOLAEMP database, this is negligible, but not for
other purposes such as transliterating whole texts, which is why a more efficient
solution was needed.

2.3 Properties of the naive procedure

The interplay between the rule format and the proceeding of the naive translit-
erators entails several properties that need to be transferred to the FST imple-
mentation in order to be able to keep the existing rule files. Despite appearing
to be similar at first glance, the EVOLAEMP transliteration also differ con-
siderably from the application of classical phonological rules as described in
Chomsky and Halle 1968.
The transliteration proceeds left-to-right. Rather than focusing on the rules
and applying them one after the other wherever they match in the string like
phonological rules, the system focuses on the input string, processing it from
left to right and applying the rules as it encounters matching character se-
quences.
The rules are applied in order. Rules that are further up in the list are tried
before those below them and the first rule that matches an arbitrarily long prefix
of the input string is applied. Because of this, the ordering of the rules requires
special attention when compiling a rule file. Consider the following two lines
from ale2xsampa:

hn n_0
hng N_0

If we were to transliterate kihngux̂ ‘grief’ using the rules in this order, we would
receive the wrong result kin_0GuX, because when the string has been cut down
to hngux̂, the first matching rule is hn → n_0. Actually, the rule hng → N_0
can never be applied in this constellation, because its predecessor will always
match before it. Hence, to arrive at the correct transliteration kiN_0uX, we need
to swap the two rules:

hng N_0
hn n_0

What we actually want to have is a greedy transliterator, i.e. a transliterator
that converts the longest prefix possible. So far, greediness has been imple-
mented manually via the rule order, but it might be beneficial to keep the
underlying concept in mind when designing the FST system.
Due to the left-to-right application, already converted material is blocked from
further transliteration within the same rule file. When a q has been converted
to q_h, the q inside that output cannot be converted to another q_h by the
same transliterator. Obviously, this would not only be counter-intuitive to what
we wanted to encode with that rule, it would also lead to an infinite loop.
Similarly, a (fictitious) rule h → x in ale2xsampa could not be applied to that
q_h either.
The application behavior resulting from this blocking mechanism is quite differ-
ent from that of phonological rules, which always operate on the output of the
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previous rules: EVOLAEMP rules may only apply to input not yet matched
by another rule within the current file. Hence, phonological rule relationships
such as feeding and bleeding, i.e. one rule explicitly generating or destroying
input for another (Kiparsky 1968), can only take place between EVOLAEMP
rule files. Another important difference is that while in phonological rules, con-
texts may be rematched for an arbitrary number of times by the same rule, the
EVOLAEMP context groups are blocked by the transliterator as well. Hence,
the vowel retraction file ale-vowels developed in section 2.1.1 does also not
work as intended.
Consider the word aqulix̂ ‘gate’, already transliterated to aq_huliX by the pre-
ceding file. The vowel retraction transliterator would correctly match the prefix
aq_h to the rule a[uvular] → A[.], converting it to Aq_h. This would, how-
ever, reduce the remaining input to uliX, rendering an application of the rule
[uvular]u → [.]o to the sequence q_hu impossible. Thus, the rules for vowel
retraction must in fact be distributed over two files which we call ale-vowels1
and ale-vowels2:

#def uvular [q_h X R]

[uvular]i [.]e
[uvular]a [.]A
[uvular]u [.]o

#def uvular [q_h X R]

i[uvular] e[.]
a[uvular] A[.]
u[uvular] o[.]
i:[uvular] e:[.]
a:[uvular] A:[.]
u:[uvular] o:[.]

Now we can derive the correct transliteration in two steps: aq_huliX→ Aq_huleX
→ Aq_holeX.
Hence, in order to keep the current rule files while achieving identical translit-
eration results, the new implementation must transliterate strings from left to
right, apply the rules either greedily or in the order they appear in the file, and
block any processed material from further modifications by the same rule file,
even the members of the immutable context groups.

3 Finite State Transducer
A finite state transducer (FST) is a finite state machine with two tapes: An
input tape and an output tape. While finite state automata simply read and
accept or reject input, finite state transducers additionally map it to an out-
put string (Kaplan and Kay 1994). Thus, a finite state automaton encodes a
regular language, i.e. a set of strings, and a finite state transducer encodes a
regular relation, i.e. a set of ordered pairs of strings (Beesley and Karttunen
2003).
The common notation for FST transitions is of the form a:b, where a is the
input character and b is the output character. Similar to how epsilon transitions
connect two states of an automaton without reading a character of the input
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0start 1 2 3c:t h:) ε:S

Figure 2: Finite state transducer with input ch and output t)S.

string, the empty string may appear on both the input and output tape of a
transducer, accounting for insertion or deletion of characters. Figure 2 shows
an example of a simple transducer implementing the rule ch → t)S from our
ale2xsampa file.
Finite state transducer have proven to be very suitable for modeling phono-
logical rules (Kaplan and Kay 1994). Thus, they should also be able to rep-
resent the EVOLAEMP transliteration rules quite well. In fact, FST systems
have already been successfully implemented for grapheme-to-phoneme conver-
sion (Bouma 2000). In Caseiro, Trancoso, and Oliveira 2002, a rule-based FST
system for European Portuguese was even reported to perform better than a
machine learning approach.

3.1 Transducer operations

We have seen that simple rewrite rules as in the EVOLAEMP rule format can be
expressed as finite state transducers. But creating several small rule transduc-
ers is not going to solve the performance problems of the naive transliterator.
Ideally we would like to have one large transducer that applies all rules cor-
rectly at the same time. Fortunately, finite state transducers can be combined
in various ways. In this section I introduce the most useful ones for my imple-
mentation.
Concatenation: Just like finite state automata, two FSTs T1 and T2 can be
concatenated to form a transducer T1 ·T2. This means that the final states of T1

merge with the start state of T2 and lose their accepting quality. An example
is the FST in Figure 2, which is a concatenation of the single transducers c:t,
h:) and ε:S.
Union/Disjunction: Two FSTs T1 and T2 may also be disjointed to form a
transducer T1 ∪ T2. In this case the start states of T1 and T2 are merged. The
resulting FST accepts (and converts) the relations encoded by either original
transducer. This operation could prove useful for combining rules within the
same file.
Kleene closure: An FST T can be looped to form a transducer T ∗. To encode
a Kleene closure, an epsilon transition is drawn from all final states of T to the
start state and the start state becomes accepting.
Composition: Composition is an operation peculiar to transducers; it cannot
be applied to automata. When two FSTs T1 and T2 are composed, the output
tape of T1 serves as the input tape for T2, i.e. the resulting transducer T1◦T2 has
the input tape of T1 and the output tape of T2. This is exactly what happens
between individual rule files.
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4 Helsinki Finite State Toolkit
The Helsinki Finite State Toolkit (HFST) is not a finite state implementation
itself, but merely provides an interface for other, already existing implemen-
tations, such as the Xerox Finite State Toolkit (XFST), the Stuttgart Finite
State Toolkit (SFST), OpenFst and foma, with additional tools (Koskenniemi
and Yli-Jyrä 2008). It is primarily designed for morphological analysis, but can
be used for any finite state applications. The HFST tools can be addressed
directly from the command line as well as via a Python and C++ API.
HFST was chosen as the FST compiler for my implementation for three main
reasons. First, as an open source project, it still receives regular updates and
bug fixes and can thus be expected to run on future systems as well. Second,
it provides full Unicode support, which is indispensable for the range of writing
systems the transliterators need to cover. Finally, while most of the other larger
finite state toolkits have these features as well, they are all contained within
HFST. Even more importantly, HFST is able to convert from one format to the
other, so that any FST created with HFST can easily be used by one of the
other implementations if needed.

4.1 XFST regular expressions

HFST provides a convenient tool, hfst-regexp2fst, to construct finite state
transducers which converts a regular expression into an FST. The format of
these regular expressions is the one described in Beesley and Karttunen 2003 for
XFST. In this section I will provide an overview over the symbols and operators
relevant for my transliterator system.
Simple relations are of the form a:b, where a is a single input character and
b is a single output character. Identity relations can be formulated as either
a:a or simply a. These two expressions are equivalent as long as a denotes a
single character, but produce different transducers if a is a set of more than one
character or string: a:a is the cross product of all strings contained in a, while
the true identity relation a maps each member of a only to itself. Thus, the
format a should always be the preferred one for identity relations.
To concatenate two or more relations, no special operator character is needed,
they can just be typed one after the other (a:ba:b). For the sake of read-
ability, one can, however, insert a whitespace between concatenated relations
(a:b a:b).
The disjunction operator is |. The transducer a:c | b:c will map either a to b
or c to b. This operator can also be applied to the input or output tape alone.
Thus, the previous example could also be formulated as [a|b]:c. The square
brackets are used to cancel operator precedence. Without them, the expression
a|b:c would encode a transducer that either accepts a or maps b to c. We
could also construct an FST c:[a|b], which would transduce c to both a and
b, yielding ambiguous output.
To compose two transducers, the operator .o. may be inserted. Thus, the
transducer a:b .o. b:c is equivalent to the transducer a:c.
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The symbols for the Kleene closure are the same as in other regular expressions:
The asterisk * denotes ‘zero or more of the preceding expression’, as in [a:b]*
or a*, while the plus sign + denotes ‘one or more of the preceding expression’,
as in [a:b]+ or a+.
Similarly, there are two symbols for the complement operation which have
slightly different meanings: The tilde ~ denotes the set of all strings, includ-
ing the empty string, that are not contained in the following expression, as in
~[a|b] or ~a. The backslash \ then denotes the set of all single characters that
are not contained in the following expression, as in \[a|b] or \a. Note that the
complement operation can only be applied to languages, not to relations.
Additionally, there are some single symbols that bear a special meaning. The
empty string is denoted by the number zero 0. XFST further features a wildcard
which stands for any single character, i.e. excluding the empty string, expressed
by the question mark ?. Hence, the identity relation ? is the relation that simply
accepts any single character which is encountered. In case we intend to create a
transducer mapping from or to any of the characters having a special meaning
or function in XFST, we can escape them using the percentage sign %. Thus,
%0:1 is the relation that maps the number zero 0 to a one 1.
Combining what we have learned so far about XFST regular expressions, the
transducer in Figure 2 could be written as c:t h:) 0:S. This nicely corresponds
to the transitions of the resulting FST, but feels inconvenient, since what we
really want to write is something like ch:t)S. The XFST framework provides two
ways of treating multicharacter strings: They may be surrounded by quotation
marks ". The string within these quotation marks is then interpreted as an
atomic entity rather than as a concatenation of single symbols. Furthermore,
several special characters are automatically escaped when occurring between
quotation marks. We could thus formulate our rule as "ch":"t)S". The resulting
transducer, however, would not be equivalent to the one we get from c:t h:)
0:S. In addition, not all special characters, such as the newline \n and the tab
stop \t, are escaped, which is inconvenient since the backslash occurs frequently
in X-SAMPA. The second option is thus preferable: Enclosing a string in curly
braces {} escapes all special characters except for the braces themselves, and it
is interpreted as a concatenation of the single characters contained inside that
string. Hence, {ch}:{t)S} is equivalent to c:t h:) 0:S.
Note that for each of the transducer operations discussed in section 3.1, HFST
also provides a separate tool (hfst-concatenate, hfst-disjunct, hfst-repeat
and hfst-compose, respectively), so that not all of the EVOLAEMP rules will
have to be written to a single regular expression, but can be distributed over mul-
tiple smaller transducers and then merged using the aforementioned tools.

4.1.1 Replace expressions

XFST provides an alternative way to spell out finite state transducers, which is
the replace expression. These expressions have been modeled after phonological
rules and are thus of particular interest to us.
The most basic form of the replace expression is A -> B, where A is the input
language and B is the output language. This is equivalent to the regular ex-
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pression [A:B | \A]*: It maps all instances of A in the input to B, ignoring any
other characters in between.
Two replace expressions A -> B and C -> D can be applied simultaneously when
separating them with double commas, as in A -> B ,, C -> D. Any arbitrary
number of replace expressions may be combined in this way. To exclude ambi-
guities, we can encode left-to-right greediness by rewriting the replace operator
as @->, or left-to-right laziness by rewriting it as @>. Thus, a transducer a @->
c ,, {ab} @-> c will always prefer the second rule over the first if possible.
Similarly, [a|{ab}] @-> c will always map the longer sequence ab to c and not
a where applicable.
A replace expression can also be restricted by a context specification. The FST
A -> B || X _ Y will only replace those instances of A with B that are preceded
by X and followed by Y. The contexts X and Y must be languages, not relations,
and are optional, i.e. not both have to specified. Just as in phonological rules,
these contexts are reusable and may serve as contexts again for the same or
another rule.

5 Implementation
In the previous sections I have extracted the properties of the naive implemen-
tation I want to reproduce in my system and introduced the FST framework
and syntax relevant for my program.
This section describes my implementation of an FST-based transliterator system
operating on the rule files specified in section 2.1. It has been programmed in
Java. Because of this, I decided to interact with HFST via the command line
and not the Python or C++ API, so an installation of HFST’s command line
tools is necessary to run the transliterators. In addition, the system directly
addresses bash to execute the HFST commands, so it is not compatible with
Windows computers, but should run on most Linux and OS X devices.
After demonstrating the usage of the final system at the example of the translit-
erator for Aleut, part of whose rule files we have developed in section 2.1, and
giving an overview over the system’s architecture, I go into the details of how
it works. First, I explain how the underlying HFST transducer is built. A
special focus lies on the design of the XFST regular expressions encoding the
EVOLAEMP rule files. Finally, I describe the components responsible for the
actual transliteration.

5.1 Demonstration

AleutToIPATransliterator can be used in two ways: We can start it in inter-
active mode, which enables us to spontaneously type words or sentences for the
system to transliterate and immediately receive a result. Often, however, we
might want to transliterate a whole file of lemmata at once, so AleutToIPA-
Transliterator is also able to take a text file as input and write the transliter-
ation to another file.
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We will first test its ability interactively, by simply calling the Java class:
> java AleutToIPATransliterator
Building FST... (This might take a while.) Done.
AleutToIPATransliterator ready, waiting for input (Ctrl+C to
quit):
>

Upon launching, the system detects that this is the first time we use it, since it
cannot find the transducer translit.ol. Thus, before activating the interactive
mode, it starts building a new FST.
We may now enter an Aleut expression for it to transliterate:

> Ukuĝaan ix̂amnakux̂2

ukoʁɑːn eχɑmnɛkoχ
>

After returning the IPA transcription of our input, the system allows us to enter
another bit of Aleut:

> Baluunax̂ liidax̂ ayx̂aasim hnin!3

bɛlyːnɛχ liːðɑχ ajχɑːsim n̥inꜜ
>

Since the rule files were designed to transliterate single words and not complete
sentences with punctuation, the exclamation mark is interpreted as X-SAMPA,
where it encodes the IPA sign ꜜ for a tonal downstep. In order to solve this
problem, we would need to alter the rule files, but for the task of transliterating
lists of words, which AleutToIPATransliterator was designed for, these kinds
of mistakes are negligible.
We are now going to transliterate some Aleut words stored in a file aleut-
words.txt and write the output to aleut-ipa.txt. In order to leave the inter-
active mode, we press Ctrl+C, and then give the command for transliterating
the whole file:

> java AleutToIPATransliterator aleut-words.txt aleut-ipa.txt
Transliterating aleut-words.txt... Done.

The strings contained in aleut-words.txt have been successfully transliterated
to IPA and saved in aleut-ipa.txt.
Because creating the underlying FST usually takes longer than the actual translit-
eration (as we will see in section 6), the system will not initiate the building pro-
cess again upon starting as long as it finds an old translit.ol in its working di-
rectory. Hence, after altering the rule files, it is necessary to delete translit.ol
before running the program again to see the changes. Alternatively, we can
force the system to rebuild the FST using the keyword compile:

> java AleutToIPATransliterator compile
Building FST... (This might take a while.) Done.

It will then overwrite the existing translit.ol with a freshly built one.
2‘Pleased to meet you’; taken from http://www.omniglot.com/language/phrases/aleut.php
3‘My hovercraft is full of eels!’; taken from http://www.omniglot.com/language/phrases/aleut.

php
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Figure 3: The architecture of the FST transliterator system.

5.2 System overview

Before going into the details of how the system converts the EVOLAEMP rule
files into a transducer and processes the user input, we will take a quick look
at its general architecture and how its various components interact with each
other. Figure 3 shows a diagram of the classes and their relations.
As we have just seen, the only class the user directly interacts with is Aleut-
ToIPATransliterator (or the transliterator for any other language). This pro-
gram contains information about the specific rule files of the language it encodes.
Apart from that, it does not do much processing itself, but rather serves as a
distributor that activates the other classes and provides them with the necessary
data.
The core of the system is the FSTBuilder which receives the rule files from
AleutToIPATransliterator and generates a series of HFST console commands
to create the corresponding finite state transducer. These commands are then
passed on to Terminal, a wrapper around Java’s ProcessBuilder that can start
system processes and thus interact with the bash where it executes the com-
mands generated by FSTBuilder.
User input is run through two other Transliterators. First, it is passed to a
TerminalSymbolsAdder which inserts the word boundary mark # that is used in
the rule files. The output of this conversion is then handed to the FiniteState-
Transliterator, the actual transliterator of the system. It creates the console
commands to run the user input through the HFST transducer previously con-
structed by FSTBuilder and sends these to the Terminal. The results are then
either directly piped into a file or sent back via AleutToIPATransliterator to
the user, depending on the mode in which the system was started.
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5.3 Building the transducer

Before the actual transliteration can take place, a transducer must be built from
the EVOLAEMP rule files. As we have just seen, this is the task of FSTBuilder.
In contrast to the other classes in the system, FSTBuilder is static and does not
return any value or object.
The only public method of FSTBuilder, build, takes an array containing the rule
files as an argument and processes each file in order. As described in section
2.1, a single non-empty line may contain either a comment, a group definition
or a rule, which can be easily recognized by the following attributes:
• starts with // → comment
• starts with #def → context group definition
• contains [ → context rule
• else → simple rule

Comments will just be skipped. All new context groups are stored in a map,
while rules are transformed into an XFST regular expressions. This conversion
will be described in the following subsections, where we will also see why simple
and context rules demand a separate treatment. The single transducer resulting
from these regular expressions accounts for the complete current file. It is then
composed with the previous one, ultimately resulting in a single large transducer
which applies all rule files in order.
After all files have been processed, the final transducer is minimized and con-
verted into HFST’s optimized lookup format to facilitate its later usage and dis-
tribution. Finally, the intermediate transducers and auxiliary files are deleted.

5.3.1 Replace approach

At first glance, the XFST replace expressions seem to be suited perfectly for
representing our rules. Multiple rules may be executed simultaneously so that
the output of one rule will not be matched by another, ambiguities may be
resolved by the left-to-right greedy operator and characters not covered by the
rules are simply ignored. The file ale2xsampa can thus be expressed by a single
replace expression:

{aa} @-> {a:} ,, {ch} @-> {t)S} ,, {d} @-> {D} ,, {ĝ} @-> {R}
,, […] ,, {'} @-> 0

The transducer built from this expression models the effects of the rule file
perfectly. However, first difficulties arise when we try to apply this approach to
the context rules in ale-vowels1 and ale-vowels2:

{i}[{q_h}|{X}|{R}] @-> {e}[{q_h}|{X}|{R}]

Because the -> operator, like the : operator in regular expressions, creates
the cross product of its two sides, this rule will generate ambiguous output.
Unlike regular expressions, replace expressions have no means of formulating an
identity relation. We can dissolve the context group and create three separate
transducers from it:
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{iq_h} @-> {eq_h} ,, {iX} @-> {eX} ,, {iR} @-> {eR}

Since this context group has only three members, this expression is still accept-
able, but will create very long rule chains for larger context groups, especially
for rules with multiple groups. This is not desirable, because hfst-regexp2fst
becomes considerably slower the longer the expression it needs to parse. A rule
with three contexts à 20, 5 and 20 items from EVOLAEMP’s Punjabi transliter-
ator, for example, produced 2000 simple rules and was processed for 15 minutes
before I canceled it. Thus, another solution is needed.
The built-in context function of XFST replace expressions seem particularly
tempting to use here:

{i} @-> {e} || _ [{q_h}|{X}|{R}]

However, XFST contexts are reusable and can still be matched by another
rule. In case of the Aleut files, this is actually beneficial, since it will make the
separation of rules over two files redundant. Indeed, many of the phonological
processes modeled by the EVOLAEMP context notation, such as intervocalic
consonant voicing, face the same problem as the Aleut vowel assimilation files,
and could be described more naturally with a reusable context.
Due to EVOLAEMP contexts rather being variables for a certain collection of
sounds or glyphs than actual phonological contexts though, there are exam-
ples where they cannot be properly exchanged with XFST contexts. Consider
this (simplified) example from the German orthography-to-IPA transliterator
accounting for vowel length:

[vowel][cons][cons] [.][.][.]
[vowel] [.]:

Generally, German vowels are short when followed by two or more consonant
glyphs, and long in all other cases, i.e. when followed by another vowel, a single
consonant or the end of the word. Hence, the ‘short vowel case’ is easier to
encode than the ‘long vowel cases’, while being the unmarked one in the phonetic
alphabet. The rule file now takes advantage of contexts being blocked as well,
by introducing an identity rule for the ‘short vowel case’, which serves no other
purpose than excluding it from further processing, and then lengthening all
remaining vowels. There is no way to automatically encode the first rule using
a replace expression, since it completely relies on context blocking.
The replace expression also fails in other cases, when the context rule encodes
an actual transformation. It cannot, for instance, express metathesis. Consider
this rule from the Punjabi transliterator:

◌ੱ[cons] [.]:

In Gurmukhi script, the diacritic ◌ੱ geminates the following consonant (Ager
2011). When transliterating to X-SAMPA, this gemination marker ‘moves’ to
the other side of the consonant, where it is expressed as :. To encode this
as a replace expression, we would need to distribute the changes over multiple
composed transducers:

{◌ੱ} -> 0 || _ <cons> .o. 0 -> {:} || <cons> _4

4For the sake of readability, <cons> is a placeholder for the regular expression encoding the
corresponding context group.
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However, the second transducer will insert : after any consonant, not only those
formerly preceded by the gemination diacritic. The sequence ਪੱਪ, previously
transliterated to p@◌ੱp@, will first be converted to p@p@ and then wrongly to
p:@p:@ instead of p@p:@. Hence, we need to insert a marker, e.g. !, wherever we
apply part of the rule, to keep track of our changes:

{◌ੱ} -> {!} || _ <cons> .o. 0 -> {:} || {!}<cons> _ .o. {!} -
> 0

This will yield the correct transliteration in three steps: p@◌ੱp@ → p@!p@ →
p@!p:@ → p@p:@.
Unfortunately, the compose operation disables the simultaneous notation, so we
cannot integrate our composed context transducer into the rest of the file’s rules.
The following replace expression cannot be parsed by hfst-regexp2fst:

[{◌ੱ} -> {!} || _ <cons> .o. 0 -> {:} || {!}<cons> _ .o. {!} -
> 0] ,, {x} @-> {y}

Apparently, any rule modifying characters on both sides of a context cannot
be converted to a replace expression, as long as it is not the only rule of a file.
Hence, replace expressions are not suited for representing the EVOLAEMP rule
files, since they cannot properly encode all context rules.

5.3.2 Regex approach

Since the convenient replace expressions do not work for us, we must resort
to regular expressions. While they are not looped automatically and lack the
greedy operator, they have a less restrictive syntax and could thus provide a
way to encode context rules.
As already discussed in section 4.1, converting the simple rules from ale2xsampa
into a regular expression is easy:

{ch}:{t)S}

Context rules, however, cannot be rewritten that way:
[{i}[{q_h}|{X}|{R}]]:[{e}[{q_h}|{X}|{R}]]

Again, this transducer unintentionally computes the cross product of its two
sides, leading to a highly ambiguous output. Thus, we have to first divide it up
into transformative and identity relations.
In order to do this, we first split both sides of our context rule into sequences
of literals and individual context groups:

<i> <[uvular]>, <e> <[.]>

Then we align all of the context groups as well as the literals in between:
<i> <[uvular]>
↕ ↕
<e> <[.]>

This alignment can finally be translated into a concatenated sequence of indi-
vidual transducers:
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{i}:{e} [{q_h}|{X}|{R}]

The resulting transducer unambiguously corresponds to the relation expressed
by our rule.
To further illustrate the alignment process, let us take a look at this very complex
rule from the Punjabi transliterator:

#def vowel [@ a: E: e: I i: O: o: U u:]
#def voiced [b d_d d` d)Z g]
[vowel][voiced]_h[vowel] [.]_R[.][.]_F

Formerly voiced aspirated consonants, still recognizable as such from the script,
have caused neighboring vowels to receive tone depending on their position in
the word while losing their aspiration. In the middle of the word, the preceding
vowel receives rising tone and the following vowel receives falling tone (Bowden
2012). Splitting this rule gives us the following items:

<[vowel]> <[voiced]> <_h> <[vowel]>, <[.]> <_R> <[.]> <[.]> <_F>

Obviously, the two sides of this rule cannot be aligned one-to-one as in the
Aleut rule above. The output side contains one more item and literal sequences
get deleted and inserted between the two sides. However, literals can easily
matched to the empty string on either side, which is why it is so important to
align the contexts first and then match the intervening literal sequences either
to each other or to empty strings. For the Punjabi rule, we get the following
alignment:

<[vowel]> 0 <[voiced]> <_h> <[vowel]> 0
↕ ↕ ↕ ↕ ↕ ↕

<[.]> <_R> <[.]> 0 <[.]> <_F>

The regular expression for this rule then looks as follows (the individual trans-
ducers have been separated by line breaks instead of whitespaces for better
readability):

[{@}|{a:}|{E:}|{e:}|{I}|{i:}|{O:}|{o:}|{U}|{u:}]
0:{_R}
[{b}|{d_d}|{d`}|{d)Z}|{g}]
{_h}:0
[{@}|{a:}|{E:}|{e:}|{I}|{i:}|{O:}|{o:}|{U}|{u:}]
0:{_F}

We are now able to convert both simple and context rules into XFST regular
expressions. However, in contrast to replace expressions, regular expressions
only match a single instance of their input side. They still have to be looped
and designed to ignore all characters not covered by a rule. We can embed our
single rule transducers in a larger regular expression of the form:

[<rule_1> | <rule_2> | … | <rule_n> | ?]*

This expression has two crucial deficiencies, though: First, it is neither greedy,
nor does it apply the rules in order. Thus, whenever a sequence may be covered
by two or more rules, the output becomes ambiguous. The sequence hng, which
already gave us problems in section 2.3, will be transliterated as both N_0 and
n_0G. Second, the identity relation ? can not only be applied when no other rule
matches, but on every iteration. Each letter in the sequence hng, for example,
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can also be matched by ?. Hence, we get six ambiguous transliterations just for
hng:

N_0
n_0G
n_0g
hN
hnG
hng

A solution for the second problem would be to replace ? by the complement
of the input sides of all rules, so that only characters not matched by any rule
can be skipped. But especially with larger context groups, this would make the
regular expression unnecessarily long. Also, it does not solve the problem with
the ambiguities created by the rules themselves.
So while the regular expressions are able to represent both simple and context
rules in isolation, they cannot be looped together over the input string without
creating ambiguous output.

5.3.3 Hybrid approach

While XFST’s replace expressions almost perfectly model the naive transliter-
ator’s behavior using the simultaneous notation and the greedy operator, they
cannot represent all context rules. Regular expressions, on the other hand, are
ideal for encoding both simple and context rules, but generate wrong output
when looped, since they lack a way to prioritize certain rules. It could thus be
worthwhile to combine the two approaches.
In order to benefit from the strengths of both expression types, the rules are
applied in two steps. First, we utilize the greedy operator of the replace expres-
sions to extract sequences for the rules to match. Then, we actually apply the
rules using an unambiguously looped regular expression.
The replace expressions provide a special marking format primarily designed
for enclosing certain parts of a string in brackets. It is of the form A -> X ...
Y, and will place the expression X before and Y after every instance of A, while
keeping A unchanged (Beesley and Karttunen 2003). Here, the sequence ...
is used as a placeholder for A. This enables us to also encode context rules in
replace expressions.
In the first step, we can thus greedily bracket the input sides of our rules in a
transducer brac:

[{aa} | {ch} | … | {'}] @-> {⟦} ... {⟧}

For context rules, it looks like this:
[[{i} [{q_h}|{X}|{R}]] | … | [{u:} [{q_h}|{X}|{R}]]] @-> {⟦}
... {⟧}

The characters ⟦ (U+27E6) and ⟧ (U+27E7) were chosen as brackets since they
do not have a meaning in X-SAMPA and are overall very unlikely to appear in
the input.
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These bracketed input sides can then be matched by a regular expression. By
including the brackets on the input side of the rule transducers, only those
sequences marked by the greedy operator in the first step will be matched. In
addition, all substrings which can be matched by a rule start with the same
character, ⟦. Conversely, all intervening characters, which we want to skip,
are not ⟦. Thus, we do not have to replace the identity relation ? with the
complement of all input sides, but only with the complement of ⟦.
So in the second step, we construct a transducer trans from the following regular
expression:

[{⟦aa⟧}:{a:} | {⟦ch⟧}:{t)S} | … | {⟦'⟧}:0 | \{⟦}]*

For context rules, it looks like this:
[[{⟦}:0 {i}:{e} [{q_h}|{X}|{R}] {⟧}:0] | … | [{⟦}:0 {u:}:{o:}
[{q_h}|{X}|{R}] {⟧}:0] | \{⟦}]*

To create the single transducer for the whole rule file, brac and trans are com-
posed.

5.3.4 Issues

The finite state transducer resulting from the hybrid expression achieves the
same results as the naive transliterators in almost all cases. Still, it does not
proceed in the same way and may rarely produce output different from that of
the naive implementation.
Even though the greedy application of the FST approach models what should
be achieved by the in-order application of the naive transliterators, they are not
equal. Remember these two lines from our first version of ale2xsampa:

hn n_0
hng N_0

The naive transliterator wrongly converted all instances of hng to n_0G instead
of N_0, because it applied the hn → n_0 rule first and never tried the second
one, which is why we swapped these rules in section 2.3. This is not necessary
for the FST transliterator: Due to its greediness, it will always apply hng →
N_0 first, irrespective of its position in the rule file.
While the greediness of the FST implementation allows for greater flexibility
in rule ordering and will thus usually produce better results than the naive
implementation, it can rarely generate ambiguities. Consider these two rules
I wrote when improving the German transliterator (they have been removed
again for different reasons):

[vowel]:r# [.]:6_^#
[vowel]:[cons]# [.][.]#

The first rule maps word-final r to 6_^ while preserving the length of the pre-
ceding vowel, as in kostbar kOstba:6_^ ‘valuable’. The second rule removes the
length marker in other word-final closed syllables, as in etwas ?Etvas ‘some-
thing’. But since it is used in some other rules in this file too, the group cons
also contains r, so that there are actually two possibilities for transliterating the
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sequence [vowel]:r#. This is no problem for the naive transliterator, because
it does not look for alternatives once it has found a matching rule and will thus
always apply the first one. But the FST transliterator will apply both, resulting
in an ambiguous output.
So my aim to create a transliterator that can adopt the naive’s rule files without
changes has not quite been reached. Before exchanging the two systems, the
output of both must be compared for each language to make sure that there are
no ambiguous rules. But these should be very rare and easy to resolve.

5.4 Transliterating input

After having discussed how the rewrite rules are converted to a finite state trans-
ducer translit.ol, I will now explain how this transducer is used to transliterate
the user input.
A language-specific transliterator such as AleutToIPATransliterator consists
of a constructor, a convert method for files, a convert method for individual
strings and a static compile method that calls FSTBuilder to create the trans-
ducer. Furthermore, it has a main method that parses the user command and
activates the other methods accordingly.
As demonstrated in section 5.1, AleutToIPATransliterator may be addressed
and used in three different ways:
• java AleutToIPATransliterator → start interactive mode
• java AleutToIPATransliterator compile → (re-)build transducer
• java AleutToIPATransliterator <file_1> <file_2>→ transliterate con-
tent of <file_1> to <file_2>

Each of these modes needs a different method of AleutToIPATransliterator:
The keyword compile simply activates the compile method. In the other two
cases, the constructor is evoked, which initializes the required TerminalSymbols-
Adder and FiniteStateTransliterator, and checks whether there already is a
transducer translit.ol in the working directory. If not, it will also call the
compile method. In interactive mode, the user input is then repeatedly sent to
the single-string convert method, while in file mode, the files specified by the
user are transferred to the file convert method.
Both convert methods first hand their input to the TerminalSymbolsAdder
which insert the word boundary mark # around lines and between character
sequences separated by whitespaces. Its output is then passed to the FiniteS-
tateTransliterator, where the actual transliteration as specified in the rule
files takes place.
Like the FSTBuilder, FiniteStateTransliterator uses the Terminal class to
interact with HFST via the bash. It does not read and use the language’s finite
state transducer itself, but merely provides an HFST tool with the relevant
input.
There are several tools which can be used to run a transducer on a string:
hfst-xfst, hfst-lookup and hfst-proc (HFST: Command Line Tools 2016).
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hfst-xfst is a wrapper around the original XFST interface, which is a full-
fledged program for creating, manipulating and applying finite state transducers.
However, it is interactive and thus cannot be executed in a single command,
which makes it complicated to be addressed from within a Java program. hfst-
lookup and hfst-proc, on the other hand, while also providing an interactive
mode, may be run on an input file or string individually. While hfst-proc is
designed for morphological analysis and generation, hfst-lookup is intended
for general application of transducers to user input. Also, hfst-lookup turned
out to perform faster than hfst-proc, which is why it was chosen as the FST
execution utility for FiniteStateTransliterator. This is also why FSTBuilder
converts the transducer it builds to HFST’s optimized lookup format: This
format guarantees optimal performance of hfst-lookup.
Like AleutToIPATransliterator, FiniteStateTransliterator has two separate
convert methods for strings and files, though they only differ slightly in the
commands they execute. For converting a whole file, the following command is
run:

hfst-lookup -i <transducer> -I <input-file> | cut -f 2 | sed
-e '/^\s*$/d' > <output-file>

The -i and -I options specify the transducer to use and the input file to read
from, respectively. The output of this also includes other information such as
the original input string and the weights on each line, which is why it is piped
to cut which extracts only the column containing the output strings. This list
then still contains an empty line after each string, which is removed by sed.
Finally, the output is stored in the specified output file.
Similarly, the single-string convert method executes:

echo '<input-string>' | hfst-lookup -i <transducer> | cut -f
2 | sed -e '/^\s*$/d'

Here, the input string is handed to hfst-lookup via echo. Instead of writing
the output to a file, it is retrieved from the Terminal class and returned by the
convert method, so that the interactive AleutToIPATransliterator can display
it to the user.

6 Performance
In order to find out whether the FST implementation actually surpasses the
naive implementation in terms of runtime, the transliterators for Aleut (ale),
Avar (ava), German (deu), Malayalam (mal) and Punjabi (pan) of both types
were tested on input files of varying size.

6.1 Method

These five languages were chosen for the different amount and complexity of
rules as well as their different original orthographies. Avar so far only has
a single simple grapheme-to-phoneme transliterator file with no context rules.
Aleut, as we have seen in the previous section, employs a moderate number of
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ale ava deu mal pan
Files 3 (+2) 1 (+2) 6 (+2) 5 (+2) 6 (+2)
Rules 36 (+394) 56 (+394) 120 (+394) 155 (+394) 126 (+394)

Ctxt. ref.s 15 0 48 33 36
Group size ∼7 / ∼17 ∼14 ∼9

Table 1: Some statistics of the rule systems for Aleut, Avar, German, Malayalam and
Punjabi: The number of rule files and rules (in addition to the 394 simple rules in
lowercase and xsampa2ipa), the number of times context groups are referenced in the
rules and their mean size.

files with some context rules. The German, Malayalam and Punjabi translit-
erators access a large number of files with complex phonological rules making
heavy use of context groups. German in particular employs many large context
groups, while Malayalam has the most rules overall. Detailed statistics about
the five languages’ rule systems are shown in Table 1. Their size and complexity
should relate directly to the size and build time of the transducer created from
them.
Aleut and German use a Latin script with some special characters, while Avar
has a Cyrillic script and Malayalam and Punjabi employ two distinct abugidas.
It might be interesting to see if the transliterators perform differently depending
on the Unicode range they are converting from.
To test the transliterators in a realistic environment, the actual NorthEuraLex
word lists for the five languages were used as input, despite their non-uniform
sizes. German contains 1,016 words, while Aleut contains 1,032, Avar contains
1,224 and Malayalam contains 1,062. For Punjabi, there was no word list avail-
able yet, so a list of 1,036 words was extracted from Punjabi Wikipedia articles.
The differing word counts within the NorthEuraLex word lists are due to missing
or multiple synonymous translations for a given concept.
While they could have been easily cut to contain an equal number of words, I
decided against it, because even this would not yield same-length files: Equal
number of words does not mean equal number of characters. Malayalam, for
instance, has much longer words than German due to the abugida script and
its highly agglutinative morphology (Asher and Kumari 1997). Its word list
contained 23,085 characters, while the German list only has 6,426 characters.
There is no way to reasonably unify this; also, these are the environments the
transliterators are expected to run in. The Malayalam transliterator will always
be used to transliterate Malayalam and will thus on average always encounter
longer words than its German counterpart.
The basic word lists were enlarged in two different dimensions to investigate the
systems’ performance in relation to input size:
Height: The number of lines was multiplied by factors 2, 4 and 6 by appending

copies of the original list to test performance on longer word lists.
Width: The length of each line was multiplied by factors 2, 4 and 6 by repeating

each word in a line to test performance on longer paragraphs.
I expect the FST implementation to perform better than the naive implemen-
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ale ava deu mal pan
States 484 437 1,753 2,046 2,667

Transitions 28,178 21,452 214,441 100,909 62,853
Build time 3.37 sec. 2.97 sec. 10.83 sec. 7.60 sec. 6.17 sec.

Table 2: Some statistics of the transducers for Aleut, Avar, German, Malayalam and
Punjabi: The number of states and transitions of the resulting transducer and the time
needed to build it.

tation on both sets of lists, but especially in the width dimension, where the at
least quadratic increase in runtime of the naive system will probably make it ex-
tremely slow on longer paragraphs. The naive implementation should therefore
also perform significantly worse on the long Malayalam words than on those of
the other languages.
The tests were run in a VirtualBox equipped with Ubuntu 14.04 (64-bit), 2 GB
RAM and 2 CPU cores. One can expect the transliterators to perform faster
on physical machines with better hardware, but the runtimes measured in the
virtual environment still provide a good comparison of the two implementations.
To account for performance fluctuations, the values presented in the following
sections are the medians of three consecutive test runs.
The times were measured within the respective transliterators from the start to
the end of the convert method, and additionally from the start to the end of
the compile method for the FST transliterator.

6.2 Results

6.2.1 Transducers

As expected, the size and build time of the finite state transducers reflects the
size and complexity of the rule files they were derived from. Aleut, having the
least rules, and Avar, having no context groups, yield the smallest transducers
and lowest build times, the Aleut one being only slightly larger than the Avar
one. The German, Malayalam and Punjabi transducers are significantly larger
and need much more time to be created. German has by far the most transitions,
and more than twice as many as Malayalam, perhaps due to its many huge
context groups. It also has the highest build time, needing almost 11 seconds
to be constructed. Curiously, Punjabi has much more states than both German
and Malayalam, but much less transitions, even though its rule files are overall
smaller than those of German and Malayalam. All values can be seen in Table
2.

6.2.2 Width

On the basic word lists, the naive transliterators still perform faster than the
FST implementation, especially if you add the build time for the individual
transducers. But as predicted, the runtime of the naive transliterators gets
increasingly worse on longer paragraphs. At width 2, the FST system already
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Basic list Width 2 Width 4 Width 6
Naive FST Naive FST Naive FST Naive FST

ale 0.29 0.61 2.21 0.76 19.48 1.08 76.27 1.40
ava 0.23 0.58 1.81 0.73 16.42 1.02 65.02 1.35
deu 0.69 0.63 5.32 0.82 46.63 1.05 178.08 1.36
mal 2.09 2.20 17.50 2.73 165.21 3.82 665.17 4.85
pan 0.78 2.82 6.34 3.48 56.09 4.76 216.39 6.08

Table 3: Seconds needed to transliterate Aleut, Avar, German, Malayalam and Punjabi
word lists with varying line lengths (normal length, length ∗ 2, ∗ 4, ∗ 6) by the naive
and FST transliterators.

outperforms the naive one by far. At widths 4 and 6, the FST implementation
is significantly faster even when adding build time. Table 3 shows the precise
times for each run.
As expected, the Malayalam word list is the slowest to be processed by the
naive transliterator. At width 6, it takes 11 minutes to be converted, while
the FST implementation only needs less than five seconds to process the same
input.
Interestingly, the Punjabi transliterator is the slowest in the FST implementa-
tion, while it performs similar to the German one in the naive implementation.
For the naive transliterators, the runtime is directly related to the number of
rules for each language. In the FST implementation, however, Aleut, Avar and
German perform equally fast, while Malayalam and Punjabi need about four
times as long on the same width. This cannot (only) be explained by word
length: The Avar word list has both more lines and more characters than the
Punjabi word list. Also, the basic Malayalam and Punjabi word lists are pro-
cessed slower than the other three languages at width 6, where they all contain
much more characters than width 1 Malayalam and Punjabi.
What distinguishes Malayalam and Punjabi from the other three languages is
that both employ their own scripts which are encoded in the Unicode range
for which UTF-8 needs 3 bytes per character, so the longer runtime could be
owed to the script of their word lists. This, however, is not the case, as a quick
test showed: The Malayalam transliterator was run on two files, one containing
1,000 lines of 50 Malayalam number zero ൦ characters and the other containing
1,000 lines of 50 $ characters. Both ൦ and $ are not covered by any of the rules in
the Malayalam transliterator, including the xsampa2ipa file. The transliterator
performed equally on these two files, processing both within 3.2 seconds. Thus,
the code points in the input file are not responsible for the longer runtime of
the Malayalam and Punjabi transliterators. The reason might as well lie in
the encoding or structure of the transducer, but I did not further pursue this
question here.

6.2.3 Height

Both the naive and the FST implementation’s runtime increases linearly relative
to the number of lines in the input file. While this can be expected for the
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Basic list Height 2 Height 4 Height 6
Naive FST Naive FST Naive FST Naive FST

ale 0.29 0.61 0.54 1.16 1.08 2.32 1.63 3.51
ava 0.23 0.58 0.49 1.17 0.88 2.26 1.34 3.38
deu 0.69 0.63 1.40 1.19 2.69 2.21 4.06 3.39
mal 2.09 2.20 4.20 4.35 8.40 8.61 12.66 12.83
pan 0.78 2.82 1.61 5.59 3.19 11.09 4.72 16.59

Table 4: Seconds needed to transliterate Aleut, Avar, German, Malayalam and Punjabi
word lists with varying file lengths (normal length, length ∗ 2, ∗ 4, ∗ 6) by the naive and
FST transliterators.

naive transliterators, it is surprising for the FST ones. Apparently, sequences
separated by newlines are treated separately and not as a single stream. This
leads to the naive implementation outperforming the FST one also at higher
height values. Table 4 shows the precise times for each run.

6.3 Discussion

After having examined the actual runtimes of the two systems, I now discuss
them regarding the goals of my FST implementation as stated in section 1. My
transliterators were supposed to
1. achieve better overall performance than the naive implementation,
2. be suitable for transliterating whole texts, i.e. files with lines containing
complete paragraphs instead of single words, and

3. generate the same output as the naive implementation for backward com-
patibility.

As shown in section 6.2.2, the FST system is much faster on longer paragraphs.
Its runtime increases linearly in relation to the length of the line, and only
slightly. The naive implementation displays a steep increase in runtime and
processes longer paragraphs extremely slowly. Thus, the FST transliterators
are well suited for processing real texts.
However, the naive implementation performs slightly better on the simple word
lists. In section 6.2.3 we have seen that both the FST and naive implementation
have the same runtime growth in relation to the number of lines, so the naive
system still outperforms the FST one on simple word lists. Thus, the FST
implementation does not achieve better overall performance.
Seeing that it processes the same amount of text significantly faster when di-
vided into fewer, but longer lines, we could increase its overall performance
greatly by removing newlines from the input before passing it to the transducer
and reinserting them afterwards. Removing all line breaks, however, does not
work. I also tested the two systems on real texts, but discovered that the longer
paragraphs were not converted at all by the FST transliterators5. Apparently,

5Also, the naive transliterators took hours to convert the texts, which is why the test was canceled
and replaced by the simpler one described previously.
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the hfst-lookup utility has a character cap on lines which, depending on the
input, lies somewhere around 2,500. hfst-xfst does not have such a limit, but
will eventually run out of memory and crash when given very long paragraphs.
This means that, in order to actually be able to process real texts, the FST
system also needs to insert line breaks after a certain number of characters to
guarantee conversion of the whole text. A preprocessing step which removes all
newlines and inserts new line breaks at word boundaries after e.g. 2,000 char-
acters, would solve both problems. This would compress the basic Malayalam
word list to 12 lines and the German one to just four. The performance boost
gained from this should make the FST system outperform the naive one even
on long word lists.
All in all, the system as presented in this thesis does not quite reach the set goals.
While it does achieve better results than the naive implementation on longer
paragraphs and thus full texts, it performs worse on actual word lists, its primary
purpose within the EVOLAEMP project. However, I have just presented a
possible solution for this problem, which should greatly increase its processing
speed. Also, while the FST implementation generally generates the same output
as the previous system, it may produce ambiguities in rare cases, as explained
in section 5.3.4, so the rule files need to be checked before implementing the
new systems, though most of them should already be unambiguous.

7 Conclusion
In this thesis, I have developed, presented and tested a revision of the current
EVOLAEMP transliterator system based on finite state transducers. Like the
previous system, my implementation is based on rewrite rules designed specif-
ically for each language. It converts these rules into XFST regular expression
from which a single HFST finite state transducer is created. Input is then
converted to IPA by feeding it to this transducer.
This system performs faster than the previous implementation on longer lines
of characters, but is slower on lists of single words. Thus, it is quite suitable for
transliterating full texts, but requires some improvements to be a replacement
for the EVOLAEMP cognacy list transliterators. Also, it operates differently
from the previous system and will on rare occasions produce different output.
Thus, all language transliterators have to be checked for ambiguous rules before
a potential migration to the FST implementation.
However, I presented a possible solution at least for the performance problem,
which exploits the new system’s good speed on larger paragraphs by splitting all
input into maximally long lines in a preprocessing step. It will be interesting to
see how much this boosts the FST implementation’s overall performance.
To further improve the FST transliterators, the effect of input and rule encoding
as well as transducer size on conversion speed should be examined. The Mala-
yalam and Punjabi transliterators are significantly slower than the Avar, Aleut
and German ones, which does apparently not relate to the Unicode code points
of the input, the file’s length and size or the number of states and transitions
of the transducer. There must be another feature of Malayalam and Punjabi
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specifically that leads to bad performance. A large-scale performance test on
further languages might give some insights into the cause(s).
Still, the FST transliterator system is a good approach at an improvement of
the previous one. After implementing the line compression, it should easily out-
perform the naive transliterators. Also, it is able to process even longer texts
with linear runtime growth. Thus, it can also be applicable outside the scope
of providing transcriptions of NorthEuraLex word lists. Additionally, the indi-
vidual transducers are fully functional on their own and can be converted into
HFST, XFST, SFST, OpenFST and foma formats by HFST, so that they may
be distributed independently and easily be integrated into other applications.
The FSTBuilder can also serve as a standalone program, providing a simpler
way to formulate FSTs for people unfamiliar with regular expressions.
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9 Appendix

9.1 Transliterator.java

import java.io.File;
import java.io.FileNotFoundException;

public abstract class Transliterator {

public abstract void convert(File in, File out) throws
FileNotFoundException;

public abstract String convert(String s);

}

9.2 AleutToIPATransliterator.java

/**
* The specific transliterator converting from Aleut
* Roman orthography to IPA.
*
* Based loosely on the language transliterators of
* Johannes Dellert.
*/

import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;

public class AleutToIPATransliterator extends Transliterator {

private static final File[] FILES = new File[]{new File("lowercase")
,

new File("ale2xsampa"),
new File("ale-vowels1"),
new File("ale-vowels2"),
new File("xsampa2ipa")};

private TerminalSymbolsAdder tsa;
private FiniteStateTransliterator translit;

public AleutToIPATransliterator() {
tsa = new TerminalSymbolsAdder();

File fst = new File("translit.ol");
if (!fst.exists() || !fst.isFile()) {

compile();
fst = new File("translit.ol");

}

translit = new FiniteStateTransliterator(fst);
}
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@Override
public void convert(File in, File out) {

try {
System.err.print("Transliterating " + in.getName() + "... ");
File tmp = new File("TMPX");
tsa.convert(in, tmp);
translit.convert(tmp, out);
tmp.delete();
System.err.println("Done.");

}
catch (FileNotFoundException e) {

System.err.println("Cancelled. File not found.");
}

}

@Override
public String convert(String s) {

String res = translit.convert(tsa.convert(s));
return res;

}

public static void compile() {
System.err.print("Building FST... (This might take a while.)");
for (File f : FILES)

if (!f.isFile()) {
System.err.println(" Cancelled. " + f.getName() + " does not

exist or is not a file.");
return;

}
FSTBuilder.build(FILES);
System.err.println(" Done.");

}

public static void main(String[] args)
{

if (args.length == 0) {
AleutToIPATransliterator translit = new AleutToIPATransliterator

();
System.err.println("AleutToIPATransliterator ready, waiting for

input (Ctrl+C to quit):");
Scanner in = new Scanner(System.in);

while (in.hasNextLine())
System.out.println(translit.convert(in.nextLine()));

in.close();
}
else {

if (args[0].equals("compile"))
compile();

else {
if (args.length != 2)

System.err.println("Usage: AleutToIPATransliterator [lemma
file] [output file]\n"
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+ " or: AleutToIPATransliterator compile");
else

new AleutToIPATransliterator().convert(new File(args[0]),
new File(args[1]));

}
}

}
}

9.2.1 ale2xsampa

// Source: Knut Bergsland - Aleut Dictionary (1994)

aa a:
ch t)S
d D
ĝ R
g G
hd T
hl K
hm m_0
hng N_0
hn n_0
hw W
hy C
ii i:
ng N
oo o:
q q_h
r r\
uu u:
x̂ X
y j
'

9.2.2 ale-vowels1

// Source: Knut Bergsland - Aleut Dictionary (1994)

#def uvular [q_h X R]
#def coronal [t d t)S s z n_0 n K l r\]

[uvular]i [.]e
[uvular]a [.]A
[uvular]u [.]o

[coronal]a [.]E
[coronal]u [.]y

9.2.3 ale-vowels2

// Source: Knut Bergsland - Aleut Dictionary (1994)

#def uvular [q_h X R]
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#def coronal [t d t)S s z n_0 n K l r\]

i[uvular] e[.]
a[uvular] A[.]
u[uvular] o[.]
i:[uvular] e:[.]
a:[uvular] A:[.]
u:[uvular] o:[.]

a[coronal] E[.]
u[coronal] y[.]
a:[coronal] E:[.]
u:[coronal] y:[.]

9.3 TerminalSymbolsAdder.java
/**
* This class encloses words in word boundary marks (#).
*/

import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintWriter;
import java.util.Scanner;

public class TerminalSymbolsAdder extends Transliterator {

@Override
public String convert(String str) {

return "#" + str.replace(" ", "# #") + "#";
}

@Override
public void convert(File in, File out) throws FileNotFoundException

{
Scanner read = new Scanner(in);
PrintWriter writ = new PrintWriter(out);
while (read.hasNextLine())

writ.println(convert(read.nextLine()));
read.close();
writ.close();

}
}

9.4 FiniteStateTransliterator.java
/**
* This class feeds strings to an FST.
*/

import java.io.File;

public class FiniteStateTransliterator extends Transliterator {
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Terminal t;
File fst;

public FiniteStateTransliterator(File fst) {
this.t = new Terminal();
this.fst = fst;

}

public void setFST(File fst) {
this.fst = fst;

}

/**
* Feeds a whole file to the FST and writes output directly to the

specified output file.
* @param infile Input file
* @param outfile Output file
*/

public void convert(File infile, File outfile) {
t.run("hfst-lookup -i " + fst.getAbsolutePath() + " -I " + infile.

getAbsolutePath() + " | cut -f 2 | sed -e '/^\\s*$/d' > " +
outfile.getAbsolutePath());

String error = t.error();
if (!error.equals(""))

System.err.println("\n" + error);
}

/**
* Feeds a single string to the FST and returns the result.
* @param s String to be converted
* @return String transformed by the FST
*/

public String convert(String s) {
t.run("echo '" + s + "' | hfst-lookup -i" + fst.getAbsolutePath()

+ " | cut -f 2 | sed -e '/^\\s*$/d'");
String error = t.error();
if (!error.equals(""))

System.err.println("\n" + error);
return t.output();

}
}

9.5 FSTBuilder.java

/**
* This class builds a minimal Helsinki Finite State Transducer in

optimized lookup
* format "translit.ol" from files with replacement rules.
*/

import java.io.File;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.HashMap;

34



import java.util.Scanner;

public class FSTBuilder {

/**
* Takes an array of rule files, generates terminal commands to

build the FST
* from them and runs the commands.
* @param infiles An array with all rule files
*/

public static void build(File[] infiles) {
try {

// Write terminal commands for FST creation to file cmd.txt
File outfile = new File("cmd.txt");
PrintWriter wrt = new PrintWriter(outfile);
Scanner read;
boolean first = true;

for (File infile : infiles) {
read = new Scanner(infile, "UTF-8");
appendRules(read, wrt);
read.close();

if (first) {
wrt.append("mv FSTfile FSTresult\n");
first = false;

}
else {

wrt.append("hfst-compose FSTresult FSTfile > TMPappend\n");
wrt.append("mv TMPappend FSTresult\n");

}
}

wrt.append("hfst-minimize FSTresult > TMPmin\n");
wrt.append("hfst-fst2fst --optimized-lookup-unweighted TMPmin >

translit.ol\n");
wrt.close();

// Run commands from cmd.txt in terminal
Terminal ter = new Terminal();
read = new Scanner(outfile);
while (read.hasNextLine())

ter.run(read.nextLine());
read.close();

// Delete created files
ter.run("rm TMP*\n");
ter.run("rm FST*\n");
ter.run("rm cmd.txt");

}
catch (IOException e) {

System.out.println(e.getMessage());
}

}
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/**
* Takes a Scanner with a single rule file and generates commands to

create
* an FST from it.
* @param read A Scanner with a rule file
* @param wrt The PrintWriter with the file to write the commands to
*/

private static void appendRules(Scanner read, PrintWriter wrt) {
HashMap<String, String[]> groups = new HashMap<>(); // context

groups
String line;
String[] parts;
String[] regex;
StringBuilder brac = new StringBuilder("");
StringBuilder trans = new StringBuilder("");

while (read.hasNextLine()) {
line = read.nextLine();

if (!line.equals("") && !line.startsWith("//")) { // if line is
neither empty nor a comment

parts = line.split("\\t");

if (parts[0].equals("#def")) // get context groups
groups.put(parts[1], parts[2].substring(1, parts[2].indexOf(

']')).split("\\s"));

else {
if (!groups.isEmpty() && line.indexOf('[') >= 0) { //

context rule
regex = getContextRule(parts, groups);
brac.append("[" + regex[0] + "]|");
trans.append("[{⟦}:0 " + regex[1] + " {⟧}:0] | ");

}
else { // non-context rule

brac.append("{" + escape(parts[0]) + "}|");
if (parts.length < 2)

trans.append("{⟦" + escape(parts[0]) + "⟧}:0 | ");
else

trans.append("{⟦" + escape(parts[0]) + "⟧}:{" + escape(
parts[1]) + "} | ");

}
}

}
}

wrt.append("echo '[" + brac.substring(0, brac.length() - 1).
replace("{}", "") + "] @-> {⟦} ... {⟧}' | hfst-regexp2fst >
FSTbrac\n"

+ "echo '[" + trans.toString().replace("{}", "") + "\\{⟦}]*' |
hfst-regexp2fst > FSTtrans\n"

+ "hfst-compose FSTbrac FSTtrans > FSTfile\n");
}
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/**
* Takes a context rule and returns the corresponding identity and

transducer regex
* to create an FST for it.
* @param part Array with left and right hand side of the rule
* @param groups The context groups
* @return Length-2 array with the identity regex at index 0 and the

transducer regex
* at index 1
*/

private static String[] getContextRule(String[] part, HashMap<String
, String[]> groups) {

// Replace [.]s in second part, insert |s before group names &
replace brackets with tabs

int i;
int j;
StringBuilder leftSide = new StringBuilder(part[0]);
StringBuilder rightSide = new StringBuilder(part[1]);
String cat;

while ((i = leftSide.indexOf("[")) >= 0) {
j = leftSide.indexOf("]");
cat = "\t|" + leftSide.substring(i+1, j) + "\t";
leftSide.replace(i, j+1, cat);
j = rightSide.indexOf("[");
rightSide.replace(j, j+3, cat);

}

// Split into sequences of contexts and literals
String[] left = leftSide.toString().trim().split("\t+");
String[] right = rightSide.toString().trim().split("\t+");

// Align contexts and literals and create commands for FST
building

int l = 0; // left side index
int r = 0; // right side index
StringBuilder iden = new StringBuilder(""); // left side regex

only
StringBuilder trans = new StringBuilder(""); // regex for

transformation from left to right
String context;

while (l < left.length && r < right.length) {
// identity rule for contexts
if (left[l].equals(right[r]) && left[l].startsWith("|")) {

context = getContext(groups.get(left[l].substring(1)));
iden.append(context + " ");
trans.append(context + " ");

}
else

// insertion of literal before context
if (left[l].charAt(0) == '|') {

trans.append("0:{" + escape(right[r]) + "} ");
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l--; // only increase r
}
else {

iden.append("{" + escape(left[l]) + "} ");

// deletion of literal before context
if (right[r].charAt(0) == '|') {

trans.append("{" + escape(left[l]) + "}:0 ");
r--; // only increase l

}
// literal transformation
else {

trans.append("{" + escape(left[l]) + "}:{" + escape(right[
r]) + "} ");

}
}

l++;
r++;

}

// Add final deletion or insertion
if (l < left.length) {

iden.append("{" + escape(left[l]) + "} ");
trans.append("{" + escape(left[l]) + "}:0 ");

}
if (r < right.length) {

trans.append("0:{" + escape(right[r]) + "} ");
}

// Delete final whitespace
iden.deleteCharAt(iden.length()-1);
trans.deleteCharAt(trans.length()-1);

return new String[]{iden.toString(), trans.toString()};
}

/**
* Generates the disjunct regex for a context group.
* @param group The strings in the context group
* @return The regex
*/

private static String getContext(String[] group) {
String context = "";

for (String c : group)
context += "{" + escape(c) + "}|";

return "[" + context.substring(0, context.length()-1) + "]";
}

/**
* Escapes special characters in a rule. Special characters are:
* - { and } used by HFST, escaped with HFST's escape character %
* - ' used by echo, escaped with backslash and enclosed in 's
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* @param s String to escape
* @return Escaped string
*/

private static String escape(String s) {
String r = s.replace("{", "\t1%{\t2");
r = r.replace("}", "\t1%}\t2");
r = r.replace("\t1", "}");
r = r.replace("\t2", "{");
r = r.replace("'", "'\\''");

return r;
}

}

9.6 Terminal.java

/**
* This class can run commands in the bash.
*/

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

public class Terminal {

ProcessBuilder p;
Process currentProcess;

public Terminal() {
p = new ProcessBuilder();

}

public void run(String cmd) {
p.command(new String[]{"bash", "-c", cmd});
try {

currentProcess = p.start();
currentProcess.waitFor();

}
catch (IOException | InterruptedException e) {

System.out.println(e.getMessage());
}

}

public String output() {
String result = "";
BufferedReader output = new BufferedReader(new InputStreamReader(

currentProcess.getInputStream()));

try {
String line;
while ((line = output.readLine()) != null)

result += line + "\n";
}
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catch (IOException e) {
System.out.println(e.getMessage());

}

return result;
}

public String error() {
String result = "";
BufferedReader error = new BufferedReader(new InputStreamReader(

currentProcess.getErrorStream()));

try {
String line;
while ((line = error.readLine()) != null)

result += line + "\n";
}
catch (IOException e) {

System.out.println(e.getMessage());
}

return result;
}

}
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